Bill Allombert on Mon, 15 Apr 2024 12:00:45 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: general question relating to elliptic curves and their rational points and creating a pool of rational points of count N
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: general question relating to elliptic curves and their rational points and creating a pool of rational points of count N
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 15 Apr 2024 12:00:12 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1713175214; c=relaxed/relaxed; bh=Ql1iYYEtRip7LSUAwWBABhl8fRLTaAGvp27OtAnWNjc=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=Zs3yrSDrHmK/9zDPJV4AcsOC8csKjmkVanUhpUWRHK4iilnl7ZEfySWrCVFqnpSIUBNwpRI8KNVOyqkaO9lq4lQtvoms5ZqJ7EiyF0yq/UtomBI7+0+vjAt0sT1tHUDesR8KccXKS9x+lUbDwHXsVK+GMKt/PH5/E1sog99oEq4lMxc/K2BPuxLOyTVuTKJ2p5Gj24rlRKiMLHmSHGUqdQ9KLAlFFUiREr5LVikV/5pxrISOThHyBlbN2ErO5lUtdQBgrXo2Sg4l5R8extDGxkT7cmOKJ+cfSbrhyavWgNgQkFLPFt6BjVKRp8z9YRnDLmJNXa9a/6Jhz/rqnKJowZaBAXc0yadJBql4/Q6k6hZRVPO3/27Oh4fxlU/hnWSq/G+f37w2N39aRPoln0gnQHA4+zDKld9mjMQmBMs6X5iyoP/2BA5b3pE6ATlN+omjfTW8QjnFhKm5feaNuIYhTTTjssbNu8Iu264AlrcfPSh5aa2Rply4unksmckqT5QI+cVyw+A4s+z5BmROhiQIEcC3rjp3BX5YE2iRnnj5GezY6c/YqI/wDBKTiXWrVpXQrW+qNNVGKhnrWtfOAurYl88Q0MDIP8PgmnBk3bOtz4O5P8AeuaXAL2TkfrXJl0IZsrpTvukBho76d0YoE8kC+uabUDDEdVgCpNC1yqJsQys=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1713175214; cv=none; b=Jj2lVsmgPG5643TbrLQtGaUlC5VSZ5DHHG01y9m67yNROciZwhlTYTIX4f5SlFrTWTKNvpmb7dTatyqs265yYTdyBKzny0ruMii9Sg/QGusgQPdp1uU2UxWh2l00LaFxKcYBGx6dKQ15ZNN9haM8QWfeWETw/guydm9ZzeoYn8IEPyL0viBjHoTiRnEBBTMIC0RTBujXWPOyOH7frGF0w81U3Y6VB1K0MHMj6BBCnszzCnd9ijGLJmwgUsL6RCp4OyrkXz/MA9YOtHlPsDXEwWMbN13U+es76A88fZYsKCTnHCPGHrIdhDlCnBP4h8fvvg8mc4+vCECDRCHi5yIqArL2lELexJiNr1ySDVeSNmF30GG2Ix6H/P4DaTbtycgayhwqkeKe8Q/KA7xh2gwI0+H26S5YDJSdvCJaH8tCjbmH9tHDoIZsXc4PDei66llS0i8Jcfph/wOZ697jR+bGRguzpm82dWcizSRd+CKLrUqOPEKtuZ6ChZZGVMpR8oAR+PhUDLxtnbWCZtvI1XIrij9oJ59wYxaIygB0MwC/TSJXyANzwZfCTia5aDY4LLKPb1/ba9roO69qV5Eei9aJFpMmKPLxkLP3yZS/CkxCiCFxPF4Bbo4dUwU3+6K+S+OpjJg/lGOmbnVoenB9wX3Xd/jA4VRfgcUm0qAUzRJeURE=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 15 Apr 2024 12:00:45 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1713175214; bh=Ql1iYYEtRip7LSUAwWBABhl8fRLTaAGvp27OtAnWNjc=; h=Date:From:To:Subject:References:In-Reply-To:From; b=UqKCxgXvMEje1H9HXBekWh2JwvvtGS6upoCMkG5a2wFyHiGIYpGLVUzh1/WzTXIs9 c5ZMWuUYyjjS4cBkuswNIOaEVpKYCFIEqj/SPruup4x55amEiQupvBdsXBNyFWNtdZ ROr/xggah6/oNgno+EVuQpltXpOT1q3zAD5xGnbegw6d41MQWB6vkYeFxXN2cCQ4y3 eVBp4E5ESi2WPuqQ0CaOd+Mr6Tbz/oL/MPItLPUapFGddO58BORFcx9QqsWkMwYf3R ocIHrNgipJ+dA83uwXptFUKsZmbS1Cgq3dEKGsPjKspTRd9ozZ1LfjugpchwJpbHVP oBBaDVWQmgYRRgtTutOhJW0MtU9sJLwjnLCUdng2fvi2DBmw5IN/p8kNhTsxR1Vsrq xJydvAdFkKyYUVAM/eAvjnzIS9RBZyEeVg7u3WpXOoIRVS1JauKVAP8mY1B857YHfG MwLpePMI3O4M7r967olyrnyKjhnZL3PYQUKtk2VVoydSCYsndBnWRgQh9jW8IMCP0O G2D5G2v6BEz/LrqKaMgPrK4ruSOQtRMSHdWKlcRG/MDXKoZF5iIAiDOCyP2lS72mV8 V8mkbJ0IIrY3zqudSqQYnjMb6rRmY0z8NNvw1LoDq8tt7OchSyo+xLR4Ut3VD+MM5D 3fBEKmhAEqrgWuZY2X4TDDnY=
- In-reply-to: <3554957e-047f-4a11-86cb-2d08b351423e@gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <3554957e-047f-4a11-86cb-2d08b351423e@gmail.com>
On Sun, Apr 14, 2024 at 05:51:24PM -0700, American Citizen wrote:
> Hello:
>
> I am currently working with rational Diophantine sextuples, example: [5/4,
> 5/36, 32/9, 189/4, 665/1521, 3213/676] where the product of any pair + 1 is
> a rational square.
>
> If we select 3 of the ratios, making a triple, say [5/4, 5/36, 32/9], we can
> create an elliptic curve associated with the triple [a,b,c]
>
> E: [0,(a*b+a*c+b*c),0,(a*b*c)*(a+b+c),(a*b*c)^2]
>
> I have been working with 758 sextuples, and found elliptic curves of rank =1
> through rank = 10 for Diophantine triples derived from the sextuples. (20
> triples per sextuple).
>
> My question to the group is this, given the Mordell-Weil basis (which seems
> quite easy to find for E), how can I determine a cut-off value of elliptic
> curve point heights for creating a pool of 10K points that are on the curve?
>
> I am using a gp-pari command called "ellpool(E,p,h)" where E is the curve, p
>
> I need to determine h such that the count of the pool is around 10K or so.
> Determining h seems somewhat hard to figure out, although I was using the
> regulator^(1/rank) * F to set the height h (where F is around 5 to 12 or so)
> and that generally works, but not always. Of course the torsion group for
> the curve E plays a huge part too in finding the pool of points, as the
> torsion points automatically increase the rational points found.
>
> Has someone done this work before? Can any papers be cited?
This is just come from lattice theory:
M=ellheightmatrix(E,MW_basis)
gives you a lattice and you can use qfminim(M,B,,2) to find short vectors in
your lattices.
Each lattice vectors will give you #tors points having the same height.
So pick
N=10000/elltors(E)[1]
What you need to do then is to pick B so that qfminim return about N vectors.
The expected relation between N and B is something like this:
B = sqrtn((N /(Pi^(n/2) / gamma(n/2 + 1)))^2*reg,n)
when n is the rank.
E=ellinit([0, 6625/1296, 0, 2225/729, 2500/6561])
MW_basis = [[124/9, 4879/81], [1600/9, 194750/81]]
M=ellheightmatrix(E,MW_basis)
n=#MW_basis; reg = matdet(M);
tors=elltors(E);
N=10000/tors[1];
B = sqrtn((N /(Pi^(n/2) / gamma(n/2 + 1)))^2*reg,n)
qfminim(M,B,,2)
%8 = [2500,2826.9854922754748719832305224795906320
We are very lucky, we get exactly the number we asked for!
Cheers,
Bill.