Karim Belabas on Sun, 24 Mar 2024 09:53:56 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question on PARI/GP realprecision
|
- To: hermann@stamm-wilbrandt.de
- Subject: Re: Question on PARI/GP realprecision
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Sun, 24 Mar 2024 09:53:50 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1711270431; c=relaxed/relaxed; bh=Zv5ljA4CphHKTNoT8j+Na/Ga3pVivbiz8c2xY1RKcSQ=; h=DKIM-Signature:Date:From:To:Cc:Subject:Message-ID: Mail-Followup-To:References:MIME-Version:Content-Type: Content-Disposition:Content-Transfer-Encoding:In-Reply-To; b=cL8ru4YuqNN7rq5cuz9gnTABxKh5sP0JJUyDEHN+sXvome4AZLGpqEFGIdxj/KjP6BXKvteBo/YvcD4oobSGtsTwV4CfqFRypQwtyk+gy5OnvDAUXbSYy2vPnKaRvjL4BelicTJg1Ncy01ty7eFrtZDxJCp8f+mhMdIaPi/URXiiLMfizUVAJecqfDVV2+0jcftlYvjmzj7n460mYCz4AxusMHyW8VcvFExtA9WlJF+Dw8z7iLm8fUynGFkiSdWkwOelbT7TAEjEI/9zEqq0MtdxeB/FHGZOZZyL31se5/gTgkReBnqMv0NU+ojVS8Gh5KglQe6YjZEJYWFDlvg3zCEzw1945y+NK96TXXbm7OpZbMOCKuHXwhzVK6dpMB8T6QHkqQfZ3pSE3lgDWGx2a6dWqmRgcL9q9rWXLWHo+TmxKpAIzi4LmExVVsbGGIepIJawjvIiYgCV23uUatqWMsyggLSSURqyUG9rNAoigm1X7ZkHbIf07u1LM5jPManGYjbPcDAJvkbNCcxKzCtcdJaHLDGwHcNmyOrsk7/s/lnSaCFU/wErjWWZ85UMBqOnzscfCf7RJtjL6J8cBJ3KZTgtnDqTuCB3nvH1tAjev2nvxYDC5DNfJ2hS83sN8yGZHyPTNYUW/XUFFX/ebYiKPhFowiyIb5rzwgb4P7OWo08=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1711270431; cv=none; b=JrsFUwEYftl9ZZs5b4N1c8kBvXDfo20jcGEUP8O1XhDN5fNYkaZXozGoufWtX82qBar4m2+5MgLWaMEi2JmQqS87NRCIOkuLqu2YfY5fwX7q8AuT7y4hPaBuupX50L3UHeFjE1NX/awUCRtQtXnEAPmuJgIasou/cfgHRTOftrSAZe5koEQn1h5PMmHkRdJOhDZ3kcXE+0BaMFTLnsDgdIm2PsVO7TUzIiTr5qZLqtqOoN7bYrVboRyrg+mDKmbj1pWUUERRPP6rk6vUpnTIcD3pUANxiakh7VC7lQ5Kb22AZBs4OKmiuC8G6logf9kLUC7kFDGJAc5w90TvMRZzsF0XTg56kB7uWu7KqP5hxR2hBzG4CS9/1gCVyKmBOISdSwYFT2NmrUHYd+4/OSLBcjrErN7ZYMAXfVuFwWUFyBNxdVAoBCeZi/7e9qu2lUCv9ZFS+9SHcJ3SCWgAjQ8PyGgjYdzo54uFowQ7he76jUB3bHH/nYkyX1g+Lf0VZIsHcd9wM/Ydd8iJHAgXvhtrT3d71lkrAd+vFZ6Z69HqwEZgZtUSM/n7lY0QdhVb/TmejCTgGbV86tDh9n2B1kPbq7xO4GIpwwoSs+vITm4WnEdtbBgKJUCOCuvq8MA+nTWqlSBbSTjmQ/PNeYuTNNrLCVv/TR9WDogN6BsxmZLUnEA=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Cc: pari-users@pari.math.u-bordeaux.fr
- Delivery-date: Sun, 24 Mar 2024 09:53:56 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1711270431; bh=Zv5ljA4CphHKTNoT8j+Na/Ga3pVivbiz8c2xY1RKcSQ=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=jWMDdJD2zdnARihIbd9/WlxCiUHhPmr2hoaT/LvVAu5nBpUV8m7m/gSH3AwC/cIg1 yfnudc4zvxK1GVe2yP03rn6Y0NaFFKdi0a1Ow1DnG+wQ3CkI61vXWkdfh+5NpgtKsR QSAg4CNuN6ONOdwnfxYl6SGrbCiTmf24ma3IgBMGtYUoeral1fxlz/BvF+ize7XmjJ XX7KFETINavXF18O0Oh/iaFcV7OjSZPU1N1ZcgdOVL+0t3SBLQ/2y6Gt0aQzYPA5pY R1BKQW6JKxRPS/2U9VS6QUKcDM+WmmF0W2xqfC2Nqklz2WRhtVBSLOZk4o09BzsPJP gHAHizBQfsequMVklKzMa47JdIZOSdkUZs7RGXF2d2PvpZK6YwnxmpcGVy3cai8ojK Ix/1DI4y90YZW+rUHALoYlJVA59yO36kuutEXQ8a60OzFoReEVCBwXKwdNs8OqbeQ+ nzvxT3FcX8N4zombosf86j1amLm/Qwj4ORGA/Uz0Zgy6onH71LoKFP4gcyuYNth0Mu Y4M3QXAn5i/yTHefw2Qb0+m6/Y1Yy5DTnfqZih9+daRqbGk2nelegdfuhmH4Y1RlwY LiiKtLpegYE3COF0p8Cw+BvkI7a97trXUo9LYCHwAFAxlaE8KL1qQWra4XwdNXsCrZ 5G9Za8zivg7SZWBWuuXFnzOI=
- In-reply-to: <d2644b89c9b389cf88bb8559404907d7@stamm-wilbrandt.de>
- Mail-followup-to: hermann@stamm-wilbrandt.de, pari-users@pari.math.u-bordeaux.fr
- References: <d2644b89c9b389cf88bb8559404907d7@stamm-wilbrandt.de>
* hermann@stamm-wilbrandt.de [2024-03-24 01:43]:
> I have not worked with realprecision until now.
>
> In
> https://oeis.org/A080076
>
> it is stated that reciprocal Proth prime sum is in an interval:
>
> Sum_{n>=1} 1/a(n) is in the interval (0.7473924793, 0.7473924795) (Borsos et
> al., 2022). - Amiram Eldar, Jan 29 2022
[...]
> Biggest Proth prime P[122742] is:
>
> ? P=readvec("a080076.json.txt")[1];
> ? #P
> 122742
> ? P[#P]
> 1099489607681
> ? vecmax(P)
> 1099489607681
> ?
>
>
> What PARI/GP realprecision is needed to correctly deal with this finite
> reciprocal sum?
It already correctly deals with your sum. The result you quote states
that the infinite sum lies in some interval. Not that some random finite
subsum does.
Each (positive!) term in the range you investigate provides a little
less than 1e-12 to the sum (with diminishing returns). You're missing
about 1e-7 to get into the expected range, so you need to add at least
10^5 more primes ...
If you want to convince yourself that precision is not the culprit,
compute the sum of the 1/p, instead of 1.0/p. You'll get a *very* large
rational number, exactly equal to the sum (this is a very wasteful way
to compute, as the denominator is going to be the product of all primes
in the list, but it's a doable calculation).
You will then be able to check that this (exactly known) number does not
belong to your expected interval.
Cheers,
K.B.
--
Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/