American Citizen on Thu, 07 Mar 2024 02:12:44 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
question on inconsistent results for a curve and ellrank() command |
Hello: See attached gp-pari file.While running my programs I stumbled across an inconsistent results which caused me to take a careful look.
Here are those results involving a certain elliptic curve:E = [0, 12304376939822994932659524, 0, -3648259547053109398533591982691229700073064038400, 0]
3 points of the 4 points Mordell-Weil basis (set) [ I had to do some work to finally settle down on these 3 points ]
p = [[-999779060917633308399360, 3866142351194747967608412122674782720], [-293883589543938115962240, 1452405131779215974552917691531685120], [-1406975789099557808651520, 5167717070222070579741742214157519360]]
I am trying to recover the 4th point right now.However when I run the ellrank(E,{effort}) command, differing results come up.
[0, 12304376939822994932659524, 0, -3648259547053109398533591982691229700073064038400, 0] [[-999779060917633308399360, 3866142351194747967608412122674782720], [-293883589543938115962240, 1452405131779215974552917691531685120], [-1406975789099557808651520, 5167717070222070579741742214157519360]]How would one know which exact precision and which effort setting to use, to recover at least 2 if not 3 points for the Mordell Weil basis??? Right now it appears that this is just hit-or-miss. So how do we aim to get the maximum hit? Some of the attempts come up empty-handed. This doesn't seem right.e is a rank 4 curve with SHA > 1 setting precision = 19 ellrank(E) [0, 6, 0, []] ellrank(E,2)[2, 6, 0, [[-293883589543938115962240, 1452405131779215974552917691531685120]]]ellrank(E,3) setting precision = 38 ellrank(E) [0, 6, 0, []] ellrank(E,2)[2, 6, 0, [[-6105797019069920466053760, 15917389406358134595823780451205131520], [-1910041765787625231041280, 6699967211953306552674675136155240960]]]ellrank(E,3) setting precision = 57 ellrank(E) [0, 6, 0, []] ellrank(E,2)[2, 6, 0, [[-2604689033065838647568640, 8678086907094504656562057134370808320]]]ellrank(E,3) setting precision = 84 ellrank(E) [0, 6, 0, []] ellrank(E,2)[2, 6, 0, [[482298396787552594734284800, 10726073559724236251459173261972663500800]]]ellrank(E,3) setting precision = 96 ellrank(E) [0, 6, 0, []] ellrank(E,2) [0, 6, 0, []] ellrank(E,3) setting precision = 115 ellrank(E) [0, 6, 0, []] ellrank(E,2)[2, 6, 0, [[-1406975789099557808651520, 5167717070222070579741742214157519360], [-999779060917633308399360, 3866142351194747967608412122674782720]]]ellrank(E,3)
Randall
e=[0,12304376939822994932659524,0,-3648259547053109398533591982691229700073064038400,0] p=[[-999779060917633308399360,3866142351194747967608412122674782720],[-293883589543938115962240,1452405131779215974552917691531685120],[-1406975789099557808651520,5167717070222070579741742214157519360]] print("e is a rank 4 curve with SHA > 1"); print("setting precision = 19"); default(realprecision,19); E=ellinit(e); print("ellrank(E)"); ellrank(E) print("ellrank(E,2)"); ellrank(E,2) print("ellrank(E,3)"); ellrank(E,3); print("setting precision = 38"); default(realprecision,38); E=ellinit(e); print("ellrank(E)"); ellrank(E) print("ellrank(E,2)"); ellrank(E,2) print("ellrank(E,3)"); ellrank(E,3); print("setting precision = 57"); default(realprecision,57); E=ellinit(e); print("ellrank(E)"); ellrank(E) print("ellrank(E,2)"); ellrank(E,2) print("ellrank(E,3)"); ellrank(E,3); print("setting precision = 84"); default(realprecision,84); E=ellinit(e); print("ellrank(E)"); ellrank(E) print("ellrank(E,2)"); ellrank(E,2) print("ellrank(E,3)"); ellrank(E,3); print("setting precision = 96"); default(realprecision,96); E=ellinit(e); print("ellrank(E)"); ellrank(E) print("ellrank(E,2)"); ellrank(E,2) print("ellrank(E,3)"); ellrank(E,3); print("setting precision = 115"); default(realprecision,115); E=ellinit(e); print("ellrank(E)"); ellrank(E) print("ellrank(E,2)"); ellrank(E,2) print("ellrank(E,3)"); ellrank(E,3);