Karim Belabas on Mon, 04 Mar 2024 09:21:31 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: trying to parameterize solutions for Pythagorean ratios and Diophantine m-tuples
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: trying to parameterize solutions for Pythagorean ratios and Diophantine m-tuples
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Mon, 4 Mar 2024 09:21:20 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1709540485; c=relaxed/relaxed; bh=2NDh33watlylO2a0qaN0++GljThwUV1SWpEmnfnB6wk=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=09QLdWJbd2NZVfV99NuqRhnq5H7Jxw4+Jg0BoeBKbmbKCLC6EXQDxownmVMMM02kB05tMALKqlWTc1GdOjfucze3dRMRtLfK2UOazdJaM+6T9SmPfWH2ToGDV1646PLY7kYhgj8N6Z7p6BQugoYRMAnAWafeJPfsItS5iAbsiNtAEoYGZuGiMVQwNNCfW/isYvXI/fX07ZPkoAt5ZR79fqAotr438nleXMCt223SMZYNxbMsIb/aaz1h5DL56AvwSknzJdns4ST8DwD0gNDKC7UvgIvQVVfx0tejIQH+DsFSGKIzwseqxLDigFyWWW3KiEBgshcY9rULpOVhr21WubPPfztX9KinXcgCQdNA92yHh78wb0q2Oe/2LifGHTyaFOz3tZjPy6T7mX4FRTdVu83WhRHgpk0cEXWoenv0QMwLiU5sQMmfYxnuu4n5yWw6gtuRMY/ehxeMZjpI3+gUhwIDAZJSMJNoV5GXuEzKiAsxNtekvGEfTyCqRvtseaBsK0bV5mLDxZJjnyhJgkOJd7MU63Umw5cHUght+5XHo8kSIQp4FnEVzuMyEOiZS07MTAHk0+4ExNotk0MyOeM4nSz0PICXO47Go612U7Ry10xkQNgHno9EXnHXJYaX84N+Co9fS6jsZCMAoFtjqsRlyBKf7PlfnvRkRJhp1KqwZw4=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1709540485; cv=none; b=r8H6pGWDZlVwXgflKtRCZUIWPjp0a+kR1bMUyHHvjKbN73d0HZspbi6zxyYe9yIxraJJWCSektNqRZP/fskCZWVr8l12UT5709YQXd59P6Xf+g/E/DXHS0Q7nVU2MbM7fxksBqluk6I4iq4wu0t10BZVYFiMgjNlkiV6NJVIjym0E6S93CVI+huisCq7+EJMcftj9t8V8SLUd89lEC7A9qHgxeVPMgJhF0cS2jDbsf9O+7gva+3zQbjJi6/QZggXJSaKJJvlTcVbT3mUjUOF9afEBAHjbinbs1an2HI8IRS5N3AamnAV3x9J5Fv4Dg4NSdEUFzyIMlswmmTErKVVtXfkr8Xf9DErTpyVLnUfR5iYeS9s5uvBhDmMMTlCWs+aSpomZjkEUBMq/gH3YMa04P1IUqjHScuZnLvgCwxWKqEVcFilT5rShhBoBXdi1Lm0QltwMAwbh3LKNMG59zvnTUGIDS9OrUB0oLXCFjYnNeqMK5FQFD30MMh9xAr5jpCUeYogAObaAeBd6bBjezGec5NsDPdrmYqehha5GCBFNhfS+5iM24VK+LVxcMam2MkrPk1GTSZUdvecZlBoZLcClwsCyc20rt/qT98I9nmXNHLx/u5kOTju0S42jc9CrvyyXewqZfbCOAvZRAJoCuV9mE/xsNIoljAL4niNnqNL7Lc=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 04 Mar 2024 09:21:31 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1709540485; bh=2NDh33watlylO2a0qaN0++GljThwUV1SWpEmnfnB6wk=; h=Date:From:To:Subject:References:In-Reply-To:From; b=GVZdc5zONtsyEEDed2rKR6lWJGPO0cCqBRMjlwoo2TtrKbbO2TW+8EZmyXFFrDniU OcJED+oMMgWBZnA/qEjeDU8rM0HmWJF6rAwPzqHAR4bvcrPrhzZVXrWof+As3Ll6F+ 3+2oG8D6Ghrmjuys/xr/sq916ITmvlNInAkd9mSAduEKanrZrAzQ6h5zfbolPTvVrI v3X3ShI9SQitzEftGvwej6ZVmvsiqky50bPRt16plXPkDbA+q4fwORQ6+doXWBYW2z pYDCfi0VysAAil+DS507TeeycwzwGoCgV2/6wJthxVI11kp1xREkc1bl0H4r4MO9xB HY8BhCOkXz3csciqbbwsGmj+MMZTNGilA114QYMOPvteUEVwva0ubzHKZgsMra6Ifq //D0O1pybZUwQbKkcBNTHP130Ij+0LdmbNGBcIL+nXsgDON9P9D+j2yf/X/fS3Xmt3 3zpZ3qjpg2dO2gB//4Ap1FBFRtOoZM11GRiqpCGu1ANKbyQYjmLgPeSTKCNPZoAuv9 o1XNuUOGzvAk24vTAEhBLb7Ke2IDdPDrZD+vEFcNitJ7Bb+7mrzkjuTzeZoYlaN8iF B/8h62/p7WIHOJpFZSfWUG9hj+CnVQa4g1q3l/o+ah33w4C7x0MOR1vAXw9D6agP4t oGaCBLgbr7XRcIrrir38LvFY=
- In-reply-to: <768422fe-cd9f-470c-8dc4-1604ea53dfd1@normalesup.org>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <f11b75fd-b85d-41c8-91f5-ff04920a6bf5@gmail.com> <ZeRvWCeZaI6XBtld@seventeen> <107ce7b0-314d-40f0-8d28-b49cad61046e@gmail.com> <d93725ba-5e39-4f1a-afd8-e3fb0b1eb2e4@gmail.com> <768422fe-cd9f-470c-8dc4-1604ea53dfd1@normalesup.org>
* Aurel Page [2024-03-04 09:14]:
> Dear Randall,
>
> On 04/03/2024 02:18, American Citizen wrote:
> > They state (for a rank 2 curve) with Mordell-Weil basis P and Q
> >
> > that all rational points are a composition of
> >
> > { uP + vQ for u,v in Z }
> >
> > Does this mean that some weird combination of 1000000 * P + 938471*Q
> > might produce a point of low height?
> It depends on the choice of the initial P and Q. The canonical height is
> positive definite quadratic form that gives the Mordell-Weil group mod
> torsion the structure of a Euclidean lattice. If you take {P,Q} to be a
> reduced basis, then there cannot be a large linear combination that
> magically produces a point of low height. However, that could happen if
> {P,Q} is a very bad basis. If you want all points of bounded height, you
> should first compute a reduced basis (with qflll) and then use qfminim to
> enumerate all points of bounded height (don't forget to take negatives and
> add torsion points at the end).
Mentionig qflll() is important for a conceptual explanation: an
LLL-reduced "almost orthogonal" basis limits the number of linear
combinations to be considered.
But of course qfminim always incorporates the qflll step. You can apply
it directly to ellheightmatrix(E, [P,Q]) without bothering about reduction.
Cheers,
K.B.
--
Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/