The documentation of qfbsolve() says that it returns solutions up to the action of the special orthogonal group G = SO(Q,ℤ).
What would be the simplest way to get all solutions below a given bound (by absolute value)?
I'm thinking about multiplying the primitive solutions by powers of the fundamental unit until the product fits the bound, but maybe there is an easier way?
If this functionally is missing out of the box, can support for such a bound be added to qfbsolve() as an optional parameter?
Regards,
Max