Bill Allombert on Sun, 04 Feb 2024 12:10:56 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Fast evaluation of recursive functions |
On Sun, Feb 04, 2024 at 11:31:19AM +0100, Christian Krause wrote: > Hello, > I'm extensively using recursive function definitions and need to compute > the first 0..N terms of them, for example > > a(n)=if(n<2,1,a(n-1)+a(n-2)) > > for(n=0,100,print(a(n))) > > The computation is very slow because PARI/GP apparently does not re-use > previously computed terms. > > I found the following GP script which implements a cache: > https://user42.tuxfamily.org/pari-memoize/index.html > > However, I was wondering if there is any *built-in support* for caching > (recursive) function values? > > An alternative could be to calculate recursive function terms > incrementally. Is there any syntax/pattern in GP available for this? Sure: a(n)= { my(V=vector(n)); V[1]=1; V[2]=1; for(i=3, n, V[i] = V[i-1] + V[i-2] ); V; } ? a(100) %3 = [1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296,433494437,701408733,1134903170,1836311903,2971215073,4807526976,7778742049,12586269025,20365011074,32951280099,53316291173,86267571272,139583862445,225851433717,365435296162,591286729879,956722026041,1548008755920,2504730781961,4052739537881,6557470319842,10610209857723,17167680177565,27777890035288,44945570212853,72723460248141,117669030460994,190392490709135,308061521170129,498454011879264,806515533049393,1304969544928657,2111485077978050,3416454622906707,5527939700884757,8944394323791464,14472334024676221,23416728348467685,37889062373143906,61305790721611591,99194853094755497,160500643816367088,259695496911122585,420196140727489673,679891637638612258,1100087778366101931,1779979416004714189,2880067194370816120,4660046610375530309,7540113804746346429,12200160415121876738,19740274219868223167,31940434634990099905,51680708854858323072,83621143489848422977,135301852344706746049,218922995834555169026,354224848179261915075] Cheers, Bill