Bill Allombert on Mon, 27 Nov 2023 14:41:31 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: asking for a simple locally soluble algorithm for a quartic
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: asking for a simple locally soluble algorithm for a quartic
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 27 Nov 2023 14:41:01 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1701092462; c=relaxed/relaxed; bh=6tj16oYZqSLcsOCgFC++7jPRafCAxMQBb8BNu76J0xM=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=AWeWPTLptNOMdcQdF53lFBvblAm9j/GwypDWe7XwIHE3DsTK4CUftIKPDZBFLfnLOVZybxy0BLQ7Hfo9KLcedW6J3MaW5TiixvXyNTP5+4mUWJRNIxcAOyi5UkMYr4pwxqP+mGvVCBXXVkd66tYoxIuevREfbxuc5ZS6dzC0Uji+YAv5eyXoWITA5s0vXI0ktIQSoitSHvwGcWH2gmciI7RyNWct6Hfc2MPaDFfgfKj4P4tG4AXF5S1juaVBrdsncpzPODNBaFWWAqinMJJ/h7CeVOQi5LvUf2nec5qQC3u4W6UpsxAhLJT0TL3IQqmVqoWDGNadFQaroJ4SNYBHfq/UpuJnMyb8E6x7IR4VC6a7OofCmkdJT9o0wK8op6p8+B1tT9XPfL1cnKUOkfj0n/3R+czV7IuTSZfp0zlReL/jg26C3EvtTOgqBjh1wx83Mpq6AJAMODq1Unt8dhQ1wMSjZOO5WvzUJkepUPvV6KyDF4ZUNm08CPTsOz3uyyiVfgL3Ev5lvs6y0brQhRzwdcVIuXX0DIKrPMey+mnQCdom2xW+kjgEfyEjXCHz4rT0n4Z2+l0oEuQi5B3dnsYjiVS2Orvlz7F270NnmNxCk3PBzQd8VnIZe6X+6zk3H8bucH3U3QDnbfSkX5ZGuaLFc3va6P5qV+q+rmr7yGe2XAs=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1701092462; cv=none; b=onBcHkXrCaAWFhwJhyEhia/gFS2QhaeurxLnNZe3yTSfyonlF+ukO8djeCA/lEddkf/Guoi2LaRRjlHVFp/F2IkjLu2mkiO5wiyU6XiaaCxmpRlmzceGrqRFfp0jswvxPtkU+CyWfwH1PQqTY6DtHoBLA7Ff5UZ5/uCKnQk/VB8201lFUYn2NQMCbgPHVp6Q3R6HqafuLPMXfoVk+s1YamTX5fKQzldLrmdj2FmLQhSriDeJs2V3mxmHNMo6FXibjy/Gpdv58IpP2XNpU18KFGA3Itz+AEakt+iLxXUuEs0JwSk/vOl3rH4jeWkBLMnjnRsEe0IMm2EweupnXu/VN1XbUJUHk9lGAKwi0KFEaSLJXLuZpByDOnaU3nwHv+MDvXhaQuhAi3Y3p4FDlcf9q1og+JBIH1ogXJbSH4RQVzUseW3cI8yMm2V5mA2C8v4xRRZZoe60QRSEeIJ7EiAAuO+FlVtIMf8HilfG/ja8o5gdxpxGtYUl8ixOukeczCzyCSXnD4YTpwGG16HNbe2AMiGmVx4cLa1nc/rk08qkFbuojSV56btv83sd1QK3EZhGi3ziAe0sy43oGb9UTIbgri+CNoN5wux3zSOtO7XbYIj6CBzMyxF00wQGhhgbs7tWTRyGENNU9HBRFW5L3Ckc5sPQUSvNch0lPlhkJsylbfA=
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 27 Nov 2023 14:41:31 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1701092462; bh=6tj16oYZqSLcsOCgFC++7jPRafCAxMQBb8BNu76J0xM=; h=Date:From:To:Subject:References:In-Reply-To:From; b=OMqmlq9D7hCiD64XAgqfoxjMPRbzmZJPwijBHAZPBztJ0bGNnpwbjVGwYol0N33UQ 0E/cUFeD/LOvjsi1EUnvntvXw+BviU2GRWscbtjLP00tf6ZdPS8UWyzUZQTbDCySMr uArSKL4vppjp+3QQ3X8umUe+pBvdGmj4Y4PuNSbFpi+PqthMW0uerbLZcf4NBufEHM yCzhVHrg+j9Z6+VKNVnxEWZpOJEi5cUUK0NuCMEd7jkcYwqZJ2x1k+LkqBjSsbu4fV MG+KbCzP8B7oTKtsetEdcNprlEtNFO+rxwIo82nwA3UYks40Ty7MJnF+g7MufMLpVO bF9VEQDIJBOnFWSgQr9Z1cjOg4jCFnS0lj0d6wJoPJ7JKA0Qfb81hpLgG/lftTRdDo s8l9mHWua8pe9pMnaIIZOS8zKErrQs4Aed/rFqmP4IzCwrC9JFJKts/dZ0G/Yaam/w 1bgLKPOv6CSFsLEhQCv8/chZpnhPcH0wr07kPC6aSqbKji2QAEBSKtgTqI2NEBb/YH mndVboRpUItS2D/zQcVPO8Oa1cW7BbaK1eyWjzTBS7XF732A9q69a8whfPQdkQa8FY RjmsxAadaj87XSJoA/nILCT/c1mA1vFhQkXLeM5WS5UFVALY5NpVg1lObgMhDRnE70 uwN64nSUgFwBEeCdxHx3RtxY=
- In-reply-to: <efdf3d9b-9184-4fbc-95b4-af02071e0901@gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <efdf3d9b-9184-4fbc-95b4-af02071e0901@gmail.com>
On Sun, Nov 26, 2023 at 05:44:36PM -0800, American Citizen wrote:
> Does anyone have a simple GP-Pari script which outputs 0 for false and 1 for
> true when the input is a quartic in vector format: [a,b,c,d,e] where the
> quartic is a*x^4 + b*x^3 + c^x^2 + d^x +e and we are trying to find the
> everywhere_local_solubility of the quartic?
What do you really want to do ? All of this is implemented in PARI but
you have to pull the thread from the right end.
It seems like you are are trying to reimplement PARI piecewise in GP.
For example, you can do
P=Pol([a,b,c,d,e]) \\ convert [a,b,c,d,e] to a polynomial
hyperelldisc(P) \\ compute the discriminant of y^2-P
install(hyperell_locally_soluble,GG)
hyperell_locally_soluble(P,p) \\ check solubility of y^2-P at p
But if you have an elliptic curve E, ell2cover will return the list of
everywhere locally soluble 2-covers of E.
Cheers,
Bill