Bill Allombert on Sun, 08 Oct 2023 10:19:40 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: efficient foursquare() and/or threesquare1m4() functions
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: efficient foursquare() and/or threesquare1m4() functions
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sun, 8 Oct 2023 10:19:21 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1696753156; c=relaxed/relaxed; bh=MWQSw+90cCe7dW5QBkwcD74IbmCAxrLdb6md+QbNllM=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=tgsQQ9030eqgCwAF61mTw4TkE18AQd0bSXtXGSORCKi3Ax7qqOA5LeRHdCPGQYY/ipxqVFuMLpGqpNSYvxPWt5nEZa03MEObK8x+Q1/m+P+vDVJ7OWmTdWxSGHTa9eGzRJzh1MSxn6UV6Mjzd1oecylGVrgcvTAnkue5LyBUaRi+YhTbrlI0KNSfC0kNhUryJDQiDMf7rXqgJ+gQX7z7s2+XCL6eqNqKfu5RfyngmGpAJoOenMpOfL9uYIfnRZ7HuCFtc2Nwbo+P+PT6yykPqH5VRRp/COhgvfbHNyDoVKjtIBeTLakdQXr4FI1KDBZUrWoL4Rfnb134NCM6a/WaPxRhhfjCR0uUKDnsDC9TV44174dpn0AmsE3v1pD5DXvaiA9I1AO111zFvLucwNX2gIG21KfkPLy5JnIXPMYStW9mljEW4s+XkgXuVyf4+7UxfBBYO56RCzTWsrPr36DqWEzA8+LARqFOp/KbRAnumU5ZiiMGdq6vivCH79RYqrjVp4PyUOzgMvLf/YW5w4eLyztO+hwOpx5CCEc3Q0hp6A21Xd8u81wDy/IGMYz6fBYCI+Br06gMbo6P0N5gA85S33Pzej7EBLJhVGE3v+XdMHkH0JzEIosPkwpc7dC/q4q+ptV/VXMrOT6Wjp5EOG8WIV2PFyQKWJ7ElqW8qvpNWB0=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1696753156; cv=none; b=Z8vdqMwG5P4QsUVE/6fd+2eYr5p/Y1LooJ7m9T0EMTbMV6ah9vV3kcFxmkeqq3LZvhVEA2vuj/vH9PiZ8/wJHIuD6hzfFEhwLaY1w00mYC0oJZilJhxmO8r5LAapwnVeUbaQrBlBrcCQxwu3BInvg0QE2ESMy2hW1pXEHDbMSzuY6qy7jdrRAGQW4/EwdCYHz8fALPu5uk8/EOVhzs/gpc12CgEFzcTHTSPh7mgUmgVXFhnQcW8cZBvq5bjjh7B0dRHP3C20wtvwsh11dEB8CXPv37OWdUvxgxPA+g5XBGlV6Lv8AAHfhRVoCWjRXLMPJps1pkYs2jqGBtAN9dIl2H2fIQtVuRKa9ABKacblKiLu+HxC/Erej/tTpfF7Tnpck85IrElq2a70SyQIuwOEznSOIxdcAM32XRXXPvIZa6Bm/EgfhTXyRyamDI/IPmT9wm7QjjILt7pgfJdrIUT4oaNUXkwllfCBiqpOlNOyTcIXpMaD8QxD+1lQhW6AslaNz0YvkxolCaaFTPTE4UiVDwr85SwzT4bAsWzFh+Vz9ptx96MiLh0HggocvqHmq2kjTCeVrsmwySjrbhV9JnLGIRaSeDm3VxNC+UASRDRGIiuRYUuu7sriw6BiqZFq9tW6mfznZrQ37nBblAPvVXiNBwikLIsrYTrmngc7DnGIkdA=
- Authentication-results: smail; arc=none
- Delivery-date: Sun, 08 Oct 2023 10:19:40 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1696753156; bh=MWQSw+90cCe7dW5QBkwcD74IbmCAxrLdb6md+QbNllM=; h=Date:From:To:Subject:References:In-Reply-To:From; b=eC65ejveD9aFu0/3bWQ8vpxSDeHxO44KZbL6B48ktmfN/6/XL0v+UEf6p73Yytqib WJIez1OoohHd9wQmfQqYgIaGRxos/BAc+EjEnOPsN2uY3phEv/S+GLaLUbpSk67qCV RC/YCBGaoSELMeryNA2h10ya/Bj41LeOi6qzfkyMo2HCj8FgNKekEaHEbAkQf+1Fui baJiXc32vD+eN1BIXBbaZD8G2wTl8i8dgOIuFobChEmaqYsqh2XB3uxpTWtMHm29Lk fywKGLk7dtGnIjbHemc8hLOWSoeqKURCu07GtCVQXL0maCRGO2g7S/Cx7avS2Xnwt8 7VHxgSvGn8tkuCTd9Gljr5Bkb2ySAAIEKz+/V5La8ZGZcI6RasApM1K7h0Dj8IgSsy C1IqXsjgRXzxfWPhBj9sZRDRV6FmgLuGfCJwV6F0JkLRdbx+UaTM/D4N7fvjubJK4C hF34O6GVLjLw8VjkSLT9jyUayW4hOsmz3Td8kt+SDcrmPR82uGKhTOeCFgPeIL5v2D z5T6AcsodL66+6YREQmSEpqxQ5bYReLzdfGgD5OPdPZ0HDvru2pBR9WGVLrQCkTqxB H+x/QzDkUvYcLBi+rGzYxHUyTXpp7fr2NVG64+fdvsoy9E71MpHRn0v/IDnlJ5UveO eufzqZb/jIE0wP3FiwdBbhAI=
- In-reply-to: <26af7a392abb26df8258c64f9868d1bb@stamm-wilbrandt.de>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <d1c78430066dfb66eb8919b4cde59d9c@stamm-wilbrandt.de> <ZR/CnVFCjw69Ukyc@seventeen> <ZR/HnWWiyARDRhLM@seventeen> <ZSAT28CAqWZ+90qF@seventeen> <fd1141975cb1f0b4b488689089c0f980@stamm-wilbrandt.de> <ZSBJ5p0VR2EXTlqB@seventeen> <CAD0p0K7TTCbA7TR-4gn_peSKrGnPyDoTJ+LgeSsK9QKcC-X58g@mail.gmail.com> <26af7a392abb26df8258c64f9868d1bb@stamm-wilbrandt.de>
On Sun, Oct 08, 2023 at 01:25:07AM +0200, hermann@stamm-wilbrandt.de wrote:
> Because I already implemented generation of ternary quadratic form Q for n
> - that represents n
> - and has determinant 1.
> Now I need to figure out how to determine matrix M, such that
> M~*Q*M is diagonal matrix. The diagonal entries of M~*Q*M
> are three square representation of n.
See qfgaussred
Cheers,
Bill.