Bill Allombert on Mon, 12 Jun 2023 22:55:19 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Problème avec intnum
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 12 Jun 2023 22:50:22 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1686603015; c=relaxed/relaxed; bh=hZSsdas+DPRBOxxor4pBbA6mLlAq3Mgr+OYdTIOE/84=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=gk2HQx08mx5fS9iSXoFfGjhtPEYh++ai6aCQ4ARcNxr7fhg5CEus7OXsXD0I+q9bpcFCXOtH7rTSCS4Xt7DfQAwSgjKGR6xwyUvMncqtEFsNLhMbvhimphWU+lgeSzz/rtq8fHvIypmLg8HCysYz3SVGbog9ZuoosGs1swJmRySoZitqF03FLhsc06iQFkXAvUIMsX2q23Q2y1CpyQsOYzBZgCn/K1lkBiPADg+hEMLxxFC1RZyOxhifcFpQVwoVt4RV4udz88SgrdlkLKYTWqpxKoUQMTkV1ukBhT1gtFMC9IQ/ET1zuR1xFPjQ3fI5sIbDB8JEcsPzYNxtP49BseXas5ZPUerrBG7OxGG4T/Ex1l/h7Fy85p1T/Sx62LEZ6DochCYMAsOA6nqUhx2Grau+Cx1+9xVnBzgpBd4cV48BASZzHMMl1l+o+9UJzSc9A/eQgW7a8q6HV7weDJqlQyNqA3CAHAYYuUxheOy3AoIFA75b/oP7dS6EYZNqJL4/tXZcbwg3EtXxF7ExPMt9hNikybNNBS7K7sdY1ZJ9/fyvdgRfY7ylAnYsh8iH63A1YIEX40QhZEZn+cukr3z30cc/Hvo1DLNU14i6jaQGKjekwl+dgMRZHuO308q1h24dH1RFVfFzMegLvMvLrZJEb7NACw15aawNXiazys94HkE=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1686603015; cv=none; b=h1/nG8nxCyvPMajgFG+N5ZxxtbnIqROgGKRf5DAqA025GfvlblDe60dVLuHBw73fjxKZEWSd5POVN+4T+IMc3bPLtVkTyY9NOpDZ2nIdrcTSSvdJyDnI0U8uI282J/5RygPOZt+IKT++FNTTmm2wCkq7ZofStYvwVyzk36De2G0CchMtWSMuCsWd+a3gx2xaRZnHII1Goy+iWJFKHTBhSeq1hCHeDjdKOIUv9KIwYic1G9FAdB8U62Pb+82oMq+RGDdxf+4Z2Kw+S+mwFHJTcPswRtahn/X1oHTYmsjpCbdqvw73ispQ2T23uKHN92YzZDkxYTt86BOjrTH0JvdSBm/tOROQfvdsI9jc0A3/KP7H+B8zoK6ldWEgQ8qXTgMV9OB6sI5qpk2jeFFuQhcQRJFzqGYasBmiSOppdv9PGKcKFO1nJi3EvP2zhUZ4bsVmNIEGxbNtBF4ZPWL1PF+DfXnVVhUP+F/KtBNMFNtTlps75Z/pCukQBsLwrk/RXIsKOrm/sDBAPYwuMlj9CpFEpwl6QBxQAlIrZufPd+h6IiCEVQFYAtr8xDABibtQIBXkg0c+vdGUiepmuZhlQuhhE4EI1gmNX3Wskw7l4Iq/0oUAF1eGhMRgQ7xDILTzwHSCxC69b01bcm4nvxyeP8wkg/1Drsrhgw1eWyg2vSXtkVQ=
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 12 Jun 2023 22:55:19 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1686603015; bh=hZSsdas+DPRBOxxor4pBbA6mLlAq3Mgr+OYdTIOE/84=; h=Date:From:To:Subject:References:In-Reply-To:From; b=pJsIw6+prZ34ViJHev0dqHo0hloY0NYfxTi0xHomCoacYrpz8Ig9ai06Ku/DfLoMY 9oLirlBuoFVkg0zfImEOSPhcQkncYbz3pwajR4GyKFV6IVttWW6geAq857xKRZjuaZ 48WQ94gJeTCzg1sfPQrKrNRKGaQwbMk5QATLzwMfXVnD3tLh3P/OyfaXy7N5+hVEEZ NCOt7Xj4A1oHqe3J9LyI9tEB6L2ZTPUnNiA7BNbqzBpfyJXBT8hsc77u/+ZewTKa5X fh4OWzVN8AtLvp0grChGrsQMu9ml3SkMY6j48kJk9wy35tKIMsbPUGbyUxOByRkgwK uFtqumDkDH1YBnUMZWKDBVTqACKoYw7ZvgEgiUaRI6Ob3q4mT4B0XNWIn3WmbvDv84 oGEf6uPB5/do2APJIn1AogKmKBYPr7/gYb4ISm4BKM4n0xgdnbp5UWF/yDEbJ/AkKe GkPExVwc6p7TQNAJU9PhZkwaXAwFA07fSZSllfXfPppz/Qv7bBkw+SALh14xYbagg5 UIPfMhT4g5lDc72EbM0RuEZ1mGe1UejOEE974y9u0Vf4DCMVh4Ot79amJH/SpkXVoT E471s+bse09pO6KNT7cILIFPcsMt+0tMM2TjeZ5lifRefdk6k8kpqnTJcvs0iSDsve 7XJWuU6qwJ8puBhaahx59hDQ=
- In-reply-to: <DEEF9B33-EB69-4BF5-B27B-1114FC6A94AC@maths.ox.ac.uk>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <ZIdnQNdg8Re1aetW@seventeen> <DEEF9B33-EB69-4BF5-B27B-1114FC6A94AC@maths.ox.ac.uk>
On Mon, Jun 12, 2023 at 09:09:50PM +0100, Damian Rossler wrote:
> Dear Bill, thank you for this. What do you mean by « an asymptotic singularity at I »?
> The integral is along the real line, so it never meets any singularity of the function (in particular, log(x+I) is always well-defined).
I meant that:
>> PARI uses the double exponential method that does a change of variable. Unfortunately this causes the singularity
>> at I to get closer and closer to the integration path when N goes to infinity.
As you say, there are no singularity. However if you integrate over [-x,x],
after variable change, the singularity became closer and closer to the
integration interval when x goes to infinity. This is explained for example in
Pascal Molin thesis.
If you integrate on [-oo,oo] PARI uses a different variable change that does
not have this effect:
? intnum(x=-oo,oo,log(x+I)/(x^2+1))
%1 = 2.1775860903036021305006888982376139473+4.9348022005446793094172454999380755677*I
? Pi*log(2)+I*Pi^2/2
%2 = 2.1775860903036021305006888982376139473+4.9348022005446793094172454999380755677*I
Cheers,
Bill.