Bill Allombert on Wed, 25 Jan 2023 11:37:45 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Looking for a smaller solution...
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Looking for a smaller solution...
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 25 Jan 2023 11:36:35 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1674642991; c=relaxed/relaxed; bh=DT8mT9QHYJnB6py92BkTmr/eFTVdqemSx59ReHune/U=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=CS1E5Z3qNlyekRmpRMxJLubROBIRib2XaBxeKcfmGft8+ImNcL3cSJGj2yuo0ktGYjanTEnWJwKpXp7quRfsDUSwdoKmPNO7pD6U/b8A1aGeOLaafaItBAokSh57WhnapMHW+KKtamNyHNu7jJx4PhaXmxKJ6niNlXPZ1/JIjG9+aHxjBfgCMxBsMsplxCPrFJPmSBZifPC8aAHXmkuJMo4/zVzjK9BVIL07sw70Gl0T5ZwG+1vsrrJ4yi//30xdfOFQvehqd7q9pgmJpsO05x57tUlqsez3vselPwRC3ZgOSdaxjyLNRbX+WS04+xqD9QbA0GmI9157jWIbcicLNKkCO0rOp2dqr/uBugIiAvSvNqLXiD6UhtyiL1xXwrZZLulet8VtwYO3tRlwaWvb6pGpZOIo01c3ah/k9ZtIXWc+YgUJrbRz3ZPC2Oa2v9vH8ixTIhBzOlCdGLVGuPlUQSRcHf/xOmWvy7q+wTX9wjiVOoej1exGWPUTOEIWcIXolsv6a8Szv7xSpayRF9/PlVYzvSWaThew/L3giOPUFgx2ZAjcTVl2kDwY2ErLhvwT02Ur8sIaf4rVyHgH8ySc9DN/gnwLryR1oQPjTsaxBYRifvqGeBgTfaYAwCGMxxGoOGFg2bAfnw2UglNVXCtrFcrmyqk3R6ucKkGEHMDu3kU=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1674642991; cv=none; b=PYuUfgbWrIwy5YRddj0HvCfRFE056bLdAKwlc0fO51nlIVYr6pZrDHJ9f4zzck70lBhnE6yaQwnV+g7fvEvLvwSuGYXrGAj1WFfwiEmyluMGB1x94wIF8mGN37jcliOjS6+XMjnkzYQ7MR6S6Twc0dRlc15fRXk4HA5D92jZBoPrdFaTtnusVc7hNZfiFTpPCPPC2YPzXsMWj6yELPHirhN3FmmS2uCcdAsuo/nNTUKxBaJtX5XP3R1zH7r412TcZooRxhG4n0AY0s99tBfavqb82nryz+9JpB2El0OW5P3mYSVU3PWQOUqH4cLKAh3UQwcQpdZCoGmW/GxZWVijhu+kN8l7J+K1wF7W532ev5Oh5lPsmdYXbEPc8jOirVtwrNi+2XRoZqEEByS2iNXDhZ2KtTpNjYLmmfT5H815xqAGydx31ck7y/giRZCQv1byFRg2tdFmGDySo6ZczpdOu7voa/IdYctaMZ2TS0fgfB5OWBpOBb9Ebr/6CtzuLnthA4mYqnnHdUkWZIMeR7AzUc4GMVoVZaee2PQ8maqLeHsi58wTKJWiCaMCHlcP5MD7gjb9pOeqlPgq7yDkyiCZ3Ogkr7R11m4s7WwF7XF8wo5O8lt4ZdnJBBbuTLq6uCC0CtJiYzSK3uZvVdz070tI6LKXj2OFjXs/jCThG7KUh1s=
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 25 Jan 2023 11:37:45 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1674642991; bh=DT8mT9QHYJnB6py92BkTmr/eFTVdqemSx59ReHune/U=; h=Date:From:To:Subject:References:In-Reply-To:From; b=JBOcYPMan7s9gI9Hztklf12lb5NZbj4jsWsNWtPYWy6jgVMjwOeF2KiXtN178y/GX pFKhM3pJYH7Hj/j9hFJ9tJxiWPO2XXASVu0OmfHcG/IfFvhGGTzl8dYQ4Hk2c/sLIe Njs9fXNi22i4sgFj7EdKeaj+Z5d3TDsZ/waZgtr9dC03gUp71mHe2L285gG1bHBCFn 8DufOibbSH6ilUCDh11PbZF0Cnk7wHRI7gHMr0vngxTO6mIuKs6RMq4nt8Mw4dECHa aNt3+q+boh5nfok3j1GAT8bEpPC4quG5U52gD/s2gnfNU4m5skV54K7jPPGcPNOWTf oXSrHDaEGyJTZdHN28xMRb+dOYN8O8T84CYMRZnHyX/76HizisTIx7FMk/QU3rlWDo fjGBnEnhTnadAs8uIhfOBSqZZPgKIa1VfTz1WW7RFKTAj8ozsnpcFJRF/8Xgyz3+F4 d4JghG4nS0GW2e5Z7PVUhBdoSRN8QGsBp2J7s7+k3gtDp70CMN0LudL9Dob8JT8Mjj L374/Xyvxg5jTFkhXjCYKuSSY1tPjRinc18p6P1dx8NkzcR8ZE+RZDkML1qtz6Jm77 L6XNznA2neUKEdwsN+PIoxgcXgnIOJ3JxB/58BgjTQI6X3C7hGbSO/oq4nh57RJ1JR vnbfbAZkOBY48phOjQeamrq0=
- In-reply-to: <Y9EA5obqQxIx8PPI@seventeen>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <63D09B84.2050705@morpheus.net> <Y9EA5obqQxIx8PPI@seventeen>
On Wed, Jan 25, 2023 at 11:13:58AM +0100, Bill Allombert wrote:
> > b(x,y,P)={G=znstar(x,1);matsolvemod(matconcat(vector(#P,i,znlog(P[i],G))),G.cyc~,znlog(y,G))}
> > which "outputs a vector giving the exponents that each of the primes in P
> > need to be raised to in the product." ie B = product(P[i]^e[i]) where e[i]
> > is the output of the above function.
>
> There is an option to matsolvemod to give all solutions:
> b(x,y,P)={G=znstar(x,1);matsolvemod(matconcat(vector(#P,i,znlog(P[i],G))),G.cyc~,znlog(y,G),1)}
>
> ? [E,M]=b(97929,83261,[1171, 1429, 1811, 2339])
> %5 = [[843,1311,325,330]~,[270,204,204,23;0,18,12,6;0,0,6,3;0,0,0,1]]
>
> All the solutions can be written as E+M*v where v is a column vector with integral entries.
>
> So you can try to pick v to get smaller entries, for example take v=[0,0,0,-36]~
> ? E+M*[0,0,0,-36]~
> %13 = [15,1095,217,294]~
Finding the best v in general can be difficult. In this example it was easy:
? A=matconcat([M,E;0,1]);U=qflll(A);A*U
%52 =
[2 4 0 3 6]
[3 0 -6 -3 0]
[4 -4 6 -3 2]
[1 -4 0 6 0]
[1 2 0 3 -10]
The first column is positive and ends by 1, so it gives the solution [2,3,4,1]~
(with v=U[1..4,1] = [-31, -37, 111, -329]~)
and indeed:
? factorback([1171, 1429, 1811, 2339],[2,3,4,1])%97929
%54 = 83261
But in general, we might only find small solutions with rational coefficients.
Cheers,
Bill