Bill Allombert on Sun, 01 Jan 2023 16:43:40 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Solve an non-homogeneous system of equations mod Z.
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Solve an non-homogeneous system of equations mod Z.
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sun, 1 Jan 2023 16:42:17 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1672587740; c=relaxed/relaxed; bh=A0xVFoxMVHfaxpTbNu28Zn+/M+AVuKi/Yo5DOO8eAVg=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=Y12gTn6u2USEJUO3YQBcrzVLwYpJgEEk3m9BYUFkIwq4ZMyci81pQjlfc3MYxXmCVuawtzdSbXNHOIAakNi92J0mFhSOn82WS5bhAIx+gq65bnzrDrT/kaYfw2bbE/9wj7rQ04g7UThLbaImT+x2uHveCDcKl49Kut7ZJWI9lGup/phDtfBNLeJbRoP2ckwzvKX9YSYPwUlkOouZGl2oZosUblOSHtbp3rp5aMyhXURKDBz3rQWl3cq7asT3vabuySG5FijLlMOvAtC38f2tr3Dr/8YQeRDvRVNRZ0S2bnijQtsBqRNlPmYXUJ+rOREQK/l2QnFrBZHcOThnHcq+emN4SPZHqPopCLaGWwc7T9NtJibSIdqbxTA4ixLGJ1C7IU8KLhlTljrKawGtSPVn0YCxe9G5GtELfjLY1YutezbhBdKInKj9VJBJrnh2jbyQHNmYfM91azw4y820Nat7CiNk4FiNzyJVgU1sDQlzU1bIiOaipx0EhdCR7baUlMldao2UBhvtpwC8grJ4h9PPHfCiZNaAyhKCCNG/4UNmJSug4a9Kztekj/tq7eQW/FAJpEMTtLGmudBiiKyLpyh69D/hvUABZ6DDKUVNgIFA3SbSTOv3PlS1cxfP+yNgfNiOmj+f+D7kiOhCWJMR+5tHouf7wjT7eRxRUGXWSUAT0s0=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1672587740; cv=none; b=Zt15zciMBb4D8YPVgWiWCEnpcev6rJemLOBo94L/t8C37XGxc8m3q+Wfw+y4HS9eY9RDkYtTSwz7mtPHCm9tQL56w6d3zCAo231Mf8JU/9g7iFzRtwqlzEzpTrjRtaPHNOjjJGKJ83CqGAhyfViV2bMktz0AyVYRDu2MjKs2Le5HfIXL0xkGyKQPCR2WxRGo3yYi7kMk5FW+OIPTZdrGLBNH/+7ug6YzN8oCoMl5QuE2e02J+EhRGzc/GZ/+mRmrIj0L0U5RsmoKQUc4HuF75+QPfELAMlqApHDRrnXQK2GExE9LOFU0LebDQearQpHC+n9c5qM1GZtrNgs/oKxqP04qj3MvuyGA0WbkP6WguV4UimceeqWA1OSyuIjcAduZ/zAE6EAJXSoBLM2jqyfPrD/oQRW1bmW3HqCJ7rsB8LmfIh6RQIsCZ0mkFykxaIi3uVaK2g3fgF441by1HnPQ54/1HI5L0kOWdX1L7az92Wue7iHmILCasF3p9Svn6oxC5A9LqvdbL0UF9oJwAWcEx1XERVrOraLH7kGrhjLpgAT7HUb8xszGq6xpH/jj8gjUBZZb74X9v2jXdt1jLs38uN2+LmrdZdXUpX0PI17iRJtyAOdJZ1Db8wKNcBRO3ormgE89xH6WPhgYiIyJ4AscMY/uxMyRZaaAeMf6fVRvQX0=
- Authentication-results: smail; arc=none
- Delivery-date: Sun, 01 Jan 2023 16:43:40 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1672587740; bh=A0xVFoxMVHfaxpTbNu28Zn+/M+AVuKi/Yo5DOO8eAVg=; h=Date:From:To:Subject:References:In-Reply-To:From; b=B8t6DMkB0T4zoshpn1VYAb5X7SI/WhW22jPg3gDSyfQlooeOPYOOwVqz5MH593v28 sB82yaCRKhXLiAkqa+V2Pd1I7ok8MkOt6TsYR6V0+8QJxUCcvObOwj+cT1CravfOtX 0TN85sfUqMk8FBN/Bge4eSRucamMttLVD6Uob5Fxhk52csDIyTMxcDxJaq7K3l5VY3 8gkynPzJAxfQA06TrVp2Jzs1a4RoqEyx+tfF/vseujD+tNlKEIUrP/mw+hTO5zWD1z 8FLucmwDT7FeTkWr9aAXi7mA5SyV5EaLp7Ll+CIcH1GnvDu9njtt0IOgrfd9xolrne QaQ9oS1qIAAMXJ7J+csOnfsH9BIHKHrGCAgb+f5VVGI8Kp42D2fihnkdBb3QTd/tZ1 DBYAxOCNaXooNXYzi0XBgNnT6P+NYZ2FywmgE2ipI/r5f8ms1al9WJU/RmbLe9EyK5 kU3Hy0e7hN+61n5s42hY8veOZLNraSZXBWEqjWJGQG4ROpYXsWNH3MyDZ/LG+S8OxX zPPLdH9wmHlzQfxYyvo0QiL5FqRzfWIuWk3H4mFwlHep9kjTxdaZIG5SZZ22M9ii5p wIPYEHGSUU+FzXSpElLss7ERXaK6R5hL/o1NDmqDBK8z4KE7SkZtQKWsRiqF7gL96r Wda58VUmoD9qfs0OGAj5I08g=
- In-reply-to: <CAGP6POLaF0wGKK_+4oxr_=P7sjORmDvdx=zCwyoWpD-gQ8jGaQ@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAGP6POLaF0wGKK_+4oxr_=P7sjORmDvdx=zCwyoWpD-gQ8jGaQ@mail.gmail.com>
On Sun, Jan 01, 2023 at 11:17:52PM +0800, Hongyi Zhao wrote:
> Hi here,
>
> I've a set of matrices and vectors as follows:
>
> mats:= [
> [ [ -2, 0, 0 ], [ 0, -2, 0 ], [ 1, 1, 0 ] ],
> [ [ -2, 0, 0 ], [ 0, 0, 0 ], [ 0, -1, -2 ] ],
> [ [ 0, 1, 2 ], [ 1, -1, 0 ], [ -1, 0, -2 ] ],
> [ [ -1, 1, 0 ], [ 1, -1, 0 ], [ -1, -1, -2 ] ],
> [ [ -2, 0, 0 ], [ 0, -2, 0 ], [ 0, 0, -2 ] ]
> ];
> vecs:= [
> [ -23/8, 17/8, -9/8 ],
> [ 17/8, 1, -3 ],
> [ 0, 0, 0 ],
> [ 1, -2, -15/16 ],
> [ 1/8, -23/8, 15/16 ]
> ];
When posting to this list, please use PARI/GP syntax, not GAP syntax.
GAP does not use the same convention for matrix action than PARI,
mixing the two can only lead to confusion.
> I want to find a common set of solutions, a.k.a., x, for the above
> matrices and their corresponding vectors, which satisfy the following
> conditions:
>
> mat * x = vec (mod Z). \forall mat \in mats, and \forall vec \in
> vecs in the corresponding order.
What is Z ?
> Any tips for tackling this problem?
I suggest you look up matrixqz.
Cheers,
Bill.