Bill Allombert on Mon, 12 Dec 2022 22:40:37 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: prodeeulerrat in residue classes?
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: prodeeulerrat in residue classes?
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 12 Dec 2022 22:38:59 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1670881147; c=relaxed/relaxed; bh=JNhB32IuO1Mzk/czi30HjbNYlrPToQo8DjcT8GKtxIA=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=p3F2GoWbrJY98UjGd3tdsNrpwrB9F/LTNYLH9iKb+yAY7jEWEVCOtmOfuL7sBvQLP2K4t++B7ATGRUsJdmT0GoTxtBbhePgM9GGNZ5+xlKejwc8fjVNbaSOSB8rtYb4RvsyN+dSseoGAUk/VzQfeb46WlcSgl6cAwDgoRmCEoBSjKtECmdbNZgvroO5Ul7MFeDux56fvFsblN4GtYX7g+PyNMfEWBr4KfA2Oz6nvt+48OSKD7zcC0mSQQ9BFogTPY9ptllCYeD1hew4pE0JoC9Bo4T5cOBF+8Avs+RygH1nwKtLGNHKm6DIP7jC7kH/EZIqIJxNHQSKmiEStmPyx8JpWIAmea8Km/HuuEjvCznUW2um3TDujJ3aJg3JSWIptsKYq/XLS0a1J4tWXkGNwvIZFg4RYeZVgFPvXE+DSmiGrJyhrPeYYGeFCMbjdLwFCYMqu0UnAI+sSB0MSbe62suZ9fivpjiIHhe9lU1I7779bTZo8RxLxY7UD8sG1buRWPoAcnkmjmpku+2/ydBkYIgT35936kej/X14Lbal1Y+16aY1JDE2xRntE8GdamKHR7hKxMybHc/nctHHh5sSyjT+96wXImdpxnqui95zDwK3vuMstZWgCaboU1j/zqzxwxf6JkXATS4GPHKjnrGpqvMbBePzyNm1YhoNaQvWC0BE=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1670881147; cv=none; b=FUozOH5WPkdbGQQqSm/ITEheUG/cTEU8UcufIKPP7oyAubYavhP3hJqRDQoUZO618MAUib2OHlEHGZKkPagw3N9UlKjwrhFUd0us6Wl10EUwib8UYdLV2F0HRvjq9LrThk09QLl4amkWBSB933rhh4RbjEh7+Nbq/yh/CGSq6bE1BMXIagzClotumlGTsX90wjGoAkMOFpGPtU1A88rkhUv/l5C/RMfyUAoWrCJgofL4d6RRfR2M5fZpFEAEFDOaMG0dKzs0KYGGChN71Z6O/3gY3aUzyVEdPPKFPBpcMJDKhdzIve/4gwoZgfq6AHK03ztbm0VrGDubJE1BKs+Knv3QGHLitmjn8hGmXtFjrd9n/GSkmOYeRXLI6zR0FeCW+AZ6AXOfUMIWiNgit6Wk7oXdE8oIOeVNLH96Z111ARY71k1Cp6vs4OUskuAjWZBGF/PyxuZCyvCPFBPjeSb5M/jMZznhk/HSS9A3ACNTxpT2DKK3UEYcDDeAwFHcG7IkXkOfm0dBKxTu/768fMtL7NSTU6atwFzvK3Ve2R5Yx4ypTSC4aBpyA/YBn8R5PpikwS5NGhRcpBWJyAgJ1sDfQID8Y6dv7+5HQ6ZyDdgEbac8epWZYdJUlT+4MoEg0MRefLCvfEcJV4EUmjiBJUL7y9PvdGtilCpRa3T5xEZAjZA=
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 12 Dec 2022 22:40:37 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1670881147; bh=JNhB32IuO1Mzk/czi30HjbNYlrPToQo8DjcT8GKtxIA=; h=Date:From:To:Subject:References:In-Reply-To:From; b=NodrZBZISq3u94Y3yNINZNDMmPwK1aNPNgNbjDGe9r4xgGa/T7cgsdEQmHSQbXOvO 4V8+5XVGA2+ysiU7aMOzoXiyw/8PHBeYIrcALd579CbZVasyp4K3bXtvOmNxagW0gG PSc3o8jPlUuNy1w8XEDKu7DZrdkya6H4AXIMRr7i3AbHms8w+1CvWHpXDb+iU731dL MaoTHhUtMg792gUDwSO3rnyQf+mOvLtsUnoep9//6baNdmrOZUg1zIsKuh57Ekyce7 O3xOBQxiDBR+O/1/QkgCuZUcBXRhJ2tJ0gHcI8mmVMaQnFdkhjnUbAaxMiDqGVVzbk 32aw5Eq/gpisy7ApNW6hhs0WFaD5DiQEREI1jl+gnoSYk2Fg8Ikuyn2s9L4IsTg33j abZITqP75xyChY0spbBiUWqmhyUfftSZgchagMG3MOxnrityMTd98vdJNNI3q280IM VZTO/8PQYWl4TSPHC6glJmhsG0/E+8gomoondtVR9KDBZhL4hAlVGsbp8gridmjuwO 3qJHmgqzSRkHwpaL9KC34LATYhagaB7tvPtN3LdWCm4WJFQpUBkIB08kPxjPujcuEZ obiYQD3UpuvqFDyyXocRPZq8zst0OZtBBfPXsY9har+6eJlXnHgajuQDej5+7KiQot claP7ZgFXQkjnRb17PEoG3aU=
- In-reply-to: <CANXmBjyO8q-bohnaKbVjSRxe6oVZ5DRnvAYuVxj1LBnxwZORCA@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CANXmBjyO8q-bohnaKbVjSRxe6oVZ5DRnvAYuVxj1LBnxwZORCA@mail.gmail.com>
On Mon, Dec 12, 2022 at 03:25:24PM -0500, Charles Greathouse wrote:
> Cohen's prodeulerrat works like magic -- very fast and accurate. Is it
> possible to extend this to rational products over primes in fixed residue
> classes? Alternatively, is there some good way to compute this sort of
> product in PARI/GP?
>
> For example, the product over primes p = 1 (mod 3) of 1/(1 - 1/p^2), or the
> product over p = a (mod 24) of 1 - f(a)/p^2 where f(a) is in {0, 2, 4, 6}
> as in
> https://arxiv.org/abs/2211.07237
Yes this is often possible using the Flajolet-Vardi trick,
see http://algo.inria.fr/flajolet/Publications/landau.ps
I computed a number of those for Michel Waldschmidt, see
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/CyclotomicForms.pdf
When it applies, this is usually faster than method based on Fourier transform.
For example
the product over primes p = 1 (mod 3) of 1/(1 - 1/p^2) can be computed with
gv(s)=(1-3^(-s))*zeta(s)/lfun(-3,s);
zeta(2)*(1-1/9)/prod(n=1,10,gv(2^n)^(1/2^n))
Unfortunately, lfun(-3,s) is slow for large s
a good replacement is Lv(s) below:
Lv3(s)=prodeuler(p=1,2^(bitprecision(1.)/s),1/(1-kronecker(-3,p)*p^-s))
Lv4(s)=2*imag(polylog(s,exp(2*I*Pi/3)))/sqrt(3)
Lv(s)=if(s>=10000,Lv3(s),Lv4(s))
Cheers,
Bill.