| Gottfried Helms on Thu, 23 Dec 2021 08:35:38 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Precision loss of zeta(2)-zetahurwitz(2,N+1) in some range of N ? |
I recently came across this, when I wanted to use zeta and zetahurwitz for sum of reciprocal squares up to large N. My default precision is always 200 dec digits and so this gave a signal... (I never observed such a problem of loss of precision with the harmonic numbers and the psi()-function) H2o(m)=sum(k=1,m,1.0/k^2) H2(m)=zeta(2)-zetahurwitz(2,m+1) H2o(20)-H2(20) H2o(200)-H2(200) H2o(2000)-H2(2000) H2o(20000)-H2(20000) H2o(200000)-H2(200000) %1412 = -1.66345512051 E-211 %1414 = 2.20232112736 E-141 %1416 = 5.49367255720 E-177 %1418 = 5.57935952213 E-202 %1420 = -2.37743382187 E-207 Gottfried Helms