Karim Belabas on Sat, 20 Feb 2021 17:43:21 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: f( x + O(x) ) or f(x) + O(x) ? |
* Bill Allombert [2021-02-20 17:17]: > On Sat, Feb 20, 2021 at 03:36:37PM +0000, Jacques Gélinas wrote: > > In a previous post, I used this oneliner to get the vector of > > Maclaurin coefficients of a function: > > > > maclv(f,k) = Vec( f( x+O(x^(k+1)) ) ); > > > > The boundary case k=0 should return f(0) as in > > maclv( cosh, 0) == [1] > > maclv( sinc, 0) == [1] > > > > But this yields an incorrect result for this modified Riemann Xi function, > > > > Xi(x) = my(s=1/2+x); Pi^(-s/2)*gamma(1+s/2)*(s-1)*zeta(s); > > zeta is wrong: > > ? zeta(1/2+x+O(x)) > %32 = -1.9884831127532564396510949587415908792*x+O(x^2) > ? zeta(1/2+x+O(x^2)) > %33 = -1.4603545088095868128894991525152980125-3.9226461392091517274715314467145995137*x+O(x^2) > > The real bug is > > ? 1 + O(x) == O(x) > %1 = 1 Now fixed in 'master'. Thanks ! Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `