Karim Belabas on Thu, 07 Jan 2021 21:20:35 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Curiosity |
* Andrea Ribuoli [2021-01-07 21:05]: > I have installed PariGP and tried -in sequence- the following calculations (manually extending the number of iterations): > > c=0.0; for (i=1, 1000000, c=c+bigomega(i); print(c/i)) > 3.626619... > c=0.0; for (i=1, 10000000, c=c+bigomega(i); print(c/i)) > 3.786124... > c=0.0; for (i=1, 100000000, c=c+bigomega(i); print(c/i)) > 3.923512... > c=0.0; for (i=1, 1000000000, c=c+bigomega(i); print(c/i)) > 4.044220... > > > Is it possible to use PariGP to guess the limit of (c/i) for i => ∞ ? If I understand correctly, you're computing (1 / X) sum_{n <= X} \Omega(n) for increasing X. This goes to infinity as loglog X. In fact, * sum_{n <= X} \omega(n) = sum_{n <= X} sum_{p | n, p prime} 1 = sum_{p <= X} [X / p] = X sum_{p <= X} (1 / p) + O(X) * sum_{p <= X} (1 / p) ~ loglog X * it's an easy exercise to show that sum_{n <= X} (\Omega(n) - \omega(n)) is O(X) See, e.g., Gerald Tenenbaum's "Introduction to analytic and probabilistic number theory". Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `