Ricardo Buring on Tue, 21 Jan 2020 20:33:34 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Fastest way to determine whether a simple extension is Galois, starting from a polynomial
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Fastest way to determine whether a simple extension is Galois, starting from a polynomial
- From: Ricardo Buring <ricardo.buring@gmail.com>
- Date: Tue, 21 Jan 2020 20:32:49 +0100
- Delivery-date: Tue, 21 Jan 2020 20:33:34 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:from:date:message-id:subject:to; bh=rUvkvGt4yorT5XogxMdvEAhHipxg9wFKOUBYrO+ULvM=; b=E+JFzD08NDnTU1KwSSZAGQjCx2Nry2IrjRzEWlyL+vQr5XmbiWII/5Bh3yU7ZUxtc5 RhZlAhtJTk1cNQh9jJrllv9kzVV3BicFgTB2oV1D86W2lv//KxIkN72qLZl3L4/3VCkf 7v8JzlVYHD2tj0uqcM/GdozWGy5Qp9DD1XLTbU5xZLfQXW78Krsq3HuZcMLJh3EOa8iV N83y2nq+koG4/wEepeGjmgdDenGArv6Cac0BnigvcnpUEfe7oQIeM7qMh/1SpEHFgZEk e8YiAp5fr8M1CUrxKf3bbO0U2PYBWPuJ3ix9A+zbdf98T+w6SfFxgcJcLGSYjj0UWfhI P2mg==
Dear pari-users,
I notice that running e.g.
length(nfgaloisconj(x^29 - 10*x + 13)) == 29
is much faster than
length(nfgaloisconj(nfinit(x^29 - 10*x + 13))) == 29
Are both of these valid ways to discover that Q[x]/(x^29 - 10*x + 13)
is not Galois? And do these two tests give the same result general?
The documentation of nfgaloisconj only states that passing a
polynomial is allowed; does it also mean that the answer to both
questions is yes?
I am asking because SageMath uses the latter (slower) test for degrees >= 13.
Best regards,
Ricardo