Dirk Laurie on Sun, 07 Apr 2019 14:46:39 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Padé approximants?
- From: Dirk Laurie <dirk.laurie@gmail.com>
- Date: Sun, 7 Apr 2019 14:46:23 +0200
- Delivery-date: Sun, 07 Apr 2019 14:46:39 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:from:date:message-id:subject:to :content-transfer-encoding; bh=UcXmjE05zPWtweX6jPifDdkg3g1FevBkaBV+I6Isqeg=; b=mQs2Q86bCdyGXwdrdlQUFmpdkm2q3PY6OaxdcWqbg9TCHtrd4yx9FerE/gZIMhBGba pmAaVIiqIfRLR4gnSTLwuu5bi+1x8XrwH6XzSKF+Pxaw0qmzV0i3+j9XKydX0luJT246 geXQoEn2WwzFOWdQ2ejF6/uHXk0DjfKWXSs2dNQtjTWM71ZnEw4p86M5dtiCQn9dBZIH 3bj1TzjVEWsrRHdrTcCHtLxM8zTzxNJ3MEKlj85r6wUoFzMmZgs1oDS9x9GNwajcI9k9 owlCHJX73fUDQ7+4OzXbU5AGaUdnJTWtl9XPb47CVnEFcH8dqeUaUaq27G5yhJbLGF9N Ztnw==
I can't find a built-in function that computes Padé approximants of a
power series.
e.g. pade(1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + O(x^5)) → (x^2 + 6*x
+ 12)/(x^2 - 6*x + 12)
It is of course quite easy to program for oneself in the nondegenerate
case (epsilon algorithm) but I wonder if it may be disguised as a
special case of a more general function.