Jacques Gélinas on Mon, 19 Nov 2018 20:19:39 +0100


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

RE: apply(sign,x) == x


returns the polynomial \sum f(a_i) x^i


Thanks for the explanation. This example could be added to ??apply


   ? apply(x->x^2, 4*x^2 + 3*x + 2)
   %3 = 16*x^2 + 9*x + 4
   ? apply(sign, 4*x^2 - 3*x + 2)
   %4 = x^2 - x +1

Jacques Gélinas




De : Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
Envoyé : 19 novembre 2018 13:55
À : Jacques Gélinas
Cc : pari-users@pari.math.u-bordeaux.fr
Objet : Re: apply(sign,x) == x
 
* Jacques Gélinas [2018-11-19 19:38]:
> apply(f, A): If A  is  a  polynomial or power series,  apply f on all coefficients.
>
>
> Of course, I would expect sign not to return a polynomial, but -1, 0, or 1 as in
>
>
> apply(sign,Vec(x)) == [1,0]

apply(f, a t_POL \sum a_i x^i) applies f to each coefficient,
i.e. it returns the polynomial \sum f(a_i) x^i

? apply(n->n+1,'x)
%1 = 2*x + 1

Cheers,

    K.B.
--
Karim Belabas, IMB (UMR 5251)  Tel: (+33) (0)5 40 00 26 17
Universite de Bordeaux         Fax: (+33) (0)5 40 00 21 23
351, cours de la Liberation    http://www.math.u-bordeaux.fr/~kbelabas/
F-33405 Talence (France)       http://pari.math.u-bordeaux.fr/  [PARI/GP]
`