Jacques Gélinas on Mon, 01 Oct 2018 18:08:16 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Learning with GP: Factorization of F6=2^64+1 - Fermat |
Fermat noted in 1640 that 2^1+1, 2^2+1, 2^4+1, 2^8+1, 2^16+1 were prime numbers. ------------------------------ Start cut F(n) = 2^2^n + 1; \\definition of Fn Fs(n) = 1<<(1<<n) + 1; \\left shifts Fr(n) = if(n<1,3*(n==0),(Fr(n-1)-1)^2+1);\\recursion http://oeis.org/A000215 Fd(n) = my(m=2^n+1); fromdigits(vector(m,i,i==1||i==m),2); \\Bill Alombert Fv(N) = my(m=2); vector(N,n,(m*=m)+1); \\iteration skips F0=3 #F(12) == 65 \\1+2^n\64 words used for Fn apply(n->#digits(n),Fv(12)) == \\decimal digits in Fn [1, 2, 3, 5, 10, 20, 39, 78, 155, 309, 617, 1234] Fv(12)%10 == [5,7,7,7,7,7,7,7,7,7,7,7] \\last digit is 7 [2] \\ a^(p-1)=1(mod p),p prime,(a,p)=1 (Knuth, The Art of Comp. Prog. II.4.5.4) Fermat(n) = my(a=3,p=F(n)); for(k=1,2^n,a=sqr(a)%p); a%p==1; apply(Fermat,[1..12]) == [1,1,1,1,0,0,0,0,0,0,0,0] isprime(Fv(12)) == [1,1,1,1,0,0,0,0,0,0,0,0] \\no primes known for n>4 SPF = apply( n->factor(n)[1,1], Fv(8)); \\smallest prime factor SPF == [5, 17, 257, 65537, 641, 274177, 59649589127497217, 1238926361552897] SPF%10 == [5, 7, 7, 7, 1, 7, 7, 7] \\one factor ends in 7 ??? \\is p a prime factor ? Charles R Greathouse IV, 2013, http://oeis.org/A023394 ispf(p) = p>2 && Mod(2, p)^lift(Mod(2, znorder(Mod(2, p)))^p)==1 && isprime(p); apply(ispf,SPF) == [1, 1, 1, 1, 1, 1, 1, 1] ------------------------------ End paste ?? Could someone explain the ispf() one-liner program, assuming that one understands the tutorial [3, p. 12] ?? ------------------------------ Features used [4] Operators: +, *, <, =, >, *=, ==, #, %, ->, ||, <<, "[,]"(select), ^(right associative) Constructors: [a..b], [a,b,...], vector, Mod Functions: sqr, isprime, factor, apply, fromdigits, lift, znorder, (recursivity) ------------------------------ Links [1] Dickson, 1952, Chapter XV: http://archive.org/details/HistoryOfTheTheoryOfNumbersI [2] Proofs by Ph.B.: http://tomlr.free.fr/Math%E9matiques/Fichiers%20Claude/Les%20Nombres%20De%20Fermat(Fermat,%20Maths,%20Math%E9matiques,%20Nombre%20Particulier).pdf [3] Tutorial: http://pari.math.u-bordeaux.fr/pub/pari/manuals/2.11.0/tutorial.pdf [4] Reference card: http://pari.math.u-bordeaux.fr/pub/pari/manuals/2.11.0/refcard.pdf Jacques Gélinas Next: Factorization of F6=2^64+1 - Euler, Lucas