Hi,
I'm looking for an "Equation Solver" that would be able to solve equations like below (where: N=6, C(i,j)=0 or 1, with i=0..N-1, j=0..N1).
Any idea ?
Do you know about features of Pari which could help ?
Thanks
Tony
C(0,0) + C(0,1) + C(1,0) + C(1,1) != 0 (mod 4)
C(0,1) + C(0,2) + C(1,1) + C(1,2) != 0 (mod 4)
C(0,2) + C(0,3) + C(1,2) + C(1,3) != 0 (mod 4)
C(0,3) + C(0,4) + C(1,3) + C(1,4) != 0 (mod 4)
C(0,4) + C(0,5) + C(1,4) + C(1,5) != 0 (mod 4)
C(1,0) + C(1,1) + C(2,0) + C(2,1) != 0 (mod 4)
C(0,0) + C(0,2) + C(2,0) + C(2,2) != 0 (mod 4)
C(1,1) + C(1,2) + C(2,1) + C(2,2) != 0 (mod 4)
C(0,1) + C(0,3) + C(2,1) + C(2,3) != 0 (mod 4)
C(1,2) + C(1,3) + C(2,2) + C(2,3) != 0 (mod 4)
C(0,2) + C(0,4) + C(2,2) + C(2,4) != 0 (mod 4)
C(1,3) + C(1,4) + C(2,3) + C(2,4) != 0 (mod 4)
C(0,3) + C(0,5) + C(2,3) + C(2,5) != 0 (mod 4)
C(1,4) + C(1,5) + C(2,4) + C(2,5) != 0 (mod 4)
C(2,0) + C(2,1) + C(3,0) + C(3,1) != 0 (mod 4)
C(1,0) + C(1,2) + C(3,0) + C(3,2) != 0 (mod 4)
C(2,1) + C(2,2) + C(3,1) + C(3,2) != 0 (mod 4)
C(0,0) + C(0,3) + C(3,0) + C(3,3) != 0 (mod 4)
C(1,1) + C(1,3) + C(3,1) + C(3,3) != 0 (mod 4)
C(2,2) + C(2,3) + C(3,2) + C(3,3) != 0 (mod 4)
C(0,1) + C(0,4) + C(3,1) + C(3,4) != 0 (mod 4)
C(1,2) + C(1,4) + C(3,2) + C(3,4) != 0 (mod 4)
C(2,3) + C(2,4) + C(3,3) + C(3,4) != 0 (mod 4)
C(0,2) + C(0,5) + C(3,2) + C(3,5) != 0 (mod 4)
C(1,3) + C(1,5) + C(3,3) + C(3,5) != 0 (mod 4)
C(2,4) + C(2,5) + C(3,4) + C(3,5) != 0 (mod 4)
C(3,0) + C(3,1) + C(4,0) + C(4,1) != 0 (mod 4)
C(2,0) + C(2,2) + C(4,0) + C(4,2) != 0 (mod 4)
C(3,1) + C(3,2) + C(4,1) + C(4,2) != 0 (mod 4)
C(1,0) + C(1,3) + C(4,0) + C(4,3) != 0 (mod 4)
C(2,1) + C(2,3) + C(4,1) + C(4,3) != 0 (mod 4)
C(3,2) + C(3,3) + C(4,2) + C(4,3) != 0 (mod 4)
C(0,0) + C(0,4) + C(4,0) + C(4,4) != 0 (mod 4)
C(1,1) + C(1,4) + C(4,1) + C(4,4) != 0 (mod 4)
C(2,2) + C(2,4) + C(4,2) + C(4,4) != 0 (mod 4)
C(3,3) + C(3,4) + C(4,3) + C(4,4) != 0 (mod 4)
C(0,1) + C(0,5) + C(4,1) + C(4,5) != 0 (mod 4)
C(1,2) + C(1,5) + C(4,2) + C(4,5) != 0 (mod 4)
C(2,3) + C(2,5) + C(4,3) + C(4,5) != 0 (mod 4)
C(3,4) + C(3,5) + C(4,4) + C(4,5) != 0 (mod 4)
C(4,0) + C(4,1) + C(5,0) + C(5,1) != 0 (mod 4)
C(3,0) + C(3,2) + C(5,0) + C(5,2) != 0 (mod 4)
C(4,1) + C(4,2) + C(5,1) + C(5,2) != 0 (mod 4)
C(2,0) + C(2,3) + C(5,0) + C(5,3) != 0 (mod 4)
C(3,1) + C(3,3) + C(5,1) + C(5,3) != 0 (mod 4)
C(4,2) + C(4,3) + C(5,2) + C(5,3) != 0 (mod 4)
C(1,0) + C(1,4) + C(5,0) + C(5,4) != 0 (mod 4)
C(2,1) + C(2,4) + C(5,1) + C(5,4) != 0 (mod 4)
C(3,2) + C(3,4) + C(5,2) + C(5,4) != 0 (mod 4)
C(4,3) + C(4,4) + C(5,3) + C(5,4) != 0 (mod 4)
C(0,0) + C(0,5) + C(5,0) + C(5,5) != 0 (mod 4)
C(1,1) + C(1,5) + C(5,1) + C(5,5) != 0 (mod 4)
C(2,2) + C(2,5) + C(5,2) + C(5,5) != 0 (mod 4)
C(3,3) + C(3,5) + C(5,3) + C(5,5) != 0 (mod 4)
C(4,4) + C(4,5) + C(5,4) + C(5,5) != 0 (mod 4)