Karim Belabas on Mon, 09 Jul 2018 19:06:20 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Truncation Precision in PARI |
* Karim Belabas [2018-07-09 18:32]: > * Peter Pein [2018-07-09 14:17]: > > that is not very accurate :( > > > > I get: > > > > precision(-1 - Euler + 3/2*log(2*Pi) + 6*zetahurwitz(-1, 1, der = 1), 100) > > %1 = > > 0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101 > > Please check ??precision : > [...] If n is smaller than the precision of a t_REAL component of x, it is > truncated, otherwise it is extended with zeros. > [...] > > What you wrote first evaluates the expression to the default accuracy > (38 decimal digits) then pads the result with trailing zeros. I misread your message, sorry : I had somehow entirely forgotten the original thread / question and the answer I made. Indeed, sumnum(k = 1, (1 - 3*k - 6*k^2) / (2*k+2) + 3*k^2 * log(1 + 1/k)) is very inaccurate. I only intended to show how intnum's expression could be transformed algbraically, it wasn't meant to be numerically stable or efficient and I didn't bother to check the numerical answer. As you pointed out, it's actually completely wrong. I'll investigate... Other summation functions fare better with the same expression: ? sumnummonien(k = 1, (1 - 3*k - 6*k^2) / (2*k+2) + 3*k^2 * log(1 + 1/k)) %1 = 0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101 ? sumnumlagrange(k = 1, (1 - 3*k - 6*k^2) / (2*k+2) + 3*k^2 * log(1 + 1/k)) %2 = 0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101 For some reason, the only summation routine that is unable to handle that expression is the default one... Thanks for pointing this out ! :-) Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `