| Jacques Gélinas on Sun, 17 Jun 2018 06:49:42 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Rational functions equal almost everywhere, but not for "subst" |
A perplexing (bad) use of global variables. g1(r,R) = R / (2*r+1 - R); g2(r,R) = a + r; F(r,a,b,R) = g1(r,a*b*R) / g1(r-1,a*R) * g2(r,a*b*R) / g2(r-1,a*b*R) ; G(r,a,b,R) = b * (2*r-1-a*R) / (2*r+1-a*b*R) * g2(r,a*b*R) / g2(r-1,a*b*R) ; G(r,a,b,R) == F(r,a,b,R) \\ identical ! 1 G(r,0,b,R) == subst(F(r,a,b,R),a,0) \\ not equal ??? (:-( 0 G(r,0,b,R) == (2*b*r^2 + (2*b*a - b)*r - b*a)/(2*r^2 + (2*a - 1)*r + (a - 1)) 1 subst(F(r,a,b,R),a,0) == (2*b*r^2 - b*r)/(2*r^2 - r - 1) 1 g2(r,R) = a + 1; G(r,a,b,R) == F(r,a,b,R) \\ identical ! 1 G(r,0,b,R) == subst(F(r,a,b,R),a,0) \\ equal (:-) 1 Could someone explain why the substitution fails with the first definition of "g2" ? (This problem occurs with GP 2.9.4, but not with GP 2.4.1). Jacques Gélinas