Jacques Gélinas on Wed, 06 Jun 2018 02:50:38 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Maximum of a rational function of many variables in the unit cube
|
- To: "pari-users@pari.math.u-bordeaux.fr" <pari-users@pari.math.u-bordeaux.fr>
- Subject: Maximum of a rational function of many variables in the unit cube
- From: Jacques Gélinas <jacquesg00@hotmail.com>
- Date: Wed, 6 Jun 2018 00:50:34 +0000
- Accept-language: fr-CA, en-US
- Authentication-results: spf=none (sender IP is ) smtp.mailfrom=jacquesg00@hotmail.com;
- Delivery-date: Wed, 06 Jun 2018 02:50:38 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=hotmail.com; s=selector1; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=Fpe+R9/lu/hxw1+xPP08wA02+L5cLVoN0zl+QovNDzs=; b=jQZ76NfcGXf3AZmkB2ZwQCT7DGjNCh6Sx+wZRj6/sVbYGO1/C9MQcmYq1ruPdFWASsksAVp4NdJYLMGmOiSeEdktVbF3IN5grFDMP/rjYogslymAEoCmMTKZqTrNmGLQ42zNAxkiV/+hTCv9JiBJyWbbEBCBh19BmE0Ir3tcrpUztcQCvpjVzvywgzyTjCN/75ZHak5JBMX6dAg2OVWwzqOL9sJKPR8CpR8hFmXYN+qbMyuefjow/pbJ7CgJG3pcbKhSA9NN0/ovkYvYJ7TCHx308+nv74BAy5cfaaLXfPCK+BrUcZdAs8LIv1Tbn4Ml6Z7z3/OyS4asjDbi1uOwIw==
- Thread-index: AQHT/S6id0wNwkQ+y06TS/e0VO5wLw==
- Thread-topic: Maximum of a rational function of many variables in the unit cube
Now I have certain rational functions of the coefficients (a,b,c,...) of a real polynomial of degree n>1
(expressions which look like the convergents of continued fractions) such as
f1(a,b) = 1/2 * (n-2)/(n-1) * (5-a*b) / (3-a);
f2(a,b,c) = b * (3-a) / (5-a*b) * (1 - 1/3*(n-3)/(n-1)*(1-a*b*c/7)/(1-a/3)) \
/ (1 - 1/2*(n-2)/(n-1)*(1-a*b/5)/(1-a/3) );
The coefficients are in the unit cube, 0<=a<=1, 0<=b<=1, ..., and I would like to
use Pari/GP to test the conjecture that the maxima over the cube is in (0,1] for all n.
1. Could I determine the maxima over the vertices, say (0,0),(0,1),(1,0),(1,1) of f1(a,b),
without using a variable number of "for loops" or constructors like "vector" ?
2. What functions are available in GP for a Monte-Carlo search inside the cube for the maxima ?
Jacques Gelinas