Dirk Laurie on Mon, 19 Mar 2018 14:48:27 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Integration Methods in PARI
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Integration Methods in PARI
- From: Dirk Laurie <dirk.laurie@gmail.com>
- Date: Mon, 19 Mar 2018 15:48:17 +0200
- Delivery-date: Mon, 19 Mar 2018 14:48:27 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:in-reply-to:references:from:date:message-id:subject:to :content-transfer-encoding; bh=/QcQhE8eQfmnaazBDFXCkSAV4GmAfUtTP6B2O9bq5lw=; b=P+WbZWfDaW+PXeSzlJX8GDg6of14dB33whltfHFOue5bo0CLZuFR9gPJUjdhmoPewJ 998idfr/i9dJ33/UhyzDzpVhALUWYy4qbI9OT5i7/xW9Jtj2g9LrFa7qb3VF4J7Xm5b0 ycH1sfTxHQRhROmDkavSEHuKAY/2BgpeWDtfwuulhBaNwuvEMufNvnlMtW3PzZ46KzuN oZpvNmmMS9SrKvXdbK3T92ljqEC1DBSbOI0bt3C3qVrhkWffqS1Se6BQwtWPHusdPb6v Rf0YB1iXqf6DRD174QSWG7rMKzTMWgqXj6gHKoaxwNcPf7xox+Ec+kHHF4wp9Z6Ei1we Enjw==
- In-reply-to: <20180316222452.GC29248@yellowpig>
- References: <CACESMj+vSOmgzLDqczrpw6Qme5LttU_c4zQ0Jzkbrijk6ZxZig@mail.gmail.com> <20180316175708.211824qn6kwbotpc@mail.math.u-bordeaux.fr> <CACESMjLJTm_tRXGUnbrAgHVbZ90L_QLkMPkN8+KHC0X8FJdP=A@mail.gmail.com> <CACESMj+0MNDd_k8r=f5HuZ+Tpxsfo6y0CM1WW5PHQSLKTiMkFg@mail.gmail.com> <20180316222452.GC29248@yellowpig>
2018-03-17 0:24 GMT+02:00 Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>:
> On Fri, Mar 16, 2018 at 09:13:50PM +0100, kevin lucas wrote:
>> I made a mistake copying the integral from paper, it should have been
>> intnum(x=0, +oo, x*exp(cos(x))*sin(sin(x))/(x^2+1))
>> Any help or references, PARI-specific or otherwise, for integrating such
>> oscillating integrals are welcome. I apologize for the mistake.
>
> Assuming the following (I did not attempt to prove it):
>
> exp(cos(x))*sin(sin(x)) = sum(n=1,oo,sin(n*x)/n!)
>
> then set
>
> si(n)=intnum(x=0, [oo,-n*I] , x*sin(n*x)/(x^2+1))
>
> then you integral should be:
>
> suminf(n=1,si(n)/n!)
>
> which is about 0.698482642717884272267230358497712444
Pi/2*(exp(exp(-1))-1)
(thanks to André Weideman of the University of Stellenbosch)