Dirk Laurie on Mon, 19 Mar 2018 11:49:31 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Integration Methods in PARI
|
- To: kevin lucas <lucaskevin296@gmail.com>
- Subject: Re: Integration Methods in PARI
- From: Dirk Laurie <dirk.laurie@gmail.com>
- Date: Mon, 19 Mar 2018 12:49:23 +0200
- Cc: pari-users@pari.math.u-bordeaux.fr
- Delivery-date: Mon, 19 Mar 2018 11:49:31 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:in-reply-to:references:from:date:message-id:subject:to :cc; bh=vc0sTcRIawvX1Z9OaMk7sKMpFwJkes7PC8M4hXfaWtk=; b=A2D0tuZhDD/fcL/OAeHb1wqRRlVYDWmiAGl9zQOFBla091fu/OT6hw/2S5BdWSS8/i Xe+z2FGHlxo3HLPLjGBeyY5FiAp1MESbjODI1Db8urPuX8NoEmAWsn9mV0OvLl5vq9jy n9CEn73mgJbGj0mck6MBWNucLdpbhI6vW6I1cNSuc5PbyJgnStgMxkeGGDAs5Exk/9SP AB2SqwZ5587Ff0nEihPYd55Z5xXOdd3kI8Y9/+mfDu7azx0KKNPUPspoiP5NItgMyisX APw9qC1k9X0Msp4GKzLe/bHpIFohDSetgWNPEwWZA2Jg60ui5s5rWGgCdDnLaQEKz5Nm 1mzQ==
- In-reply-to: <CACESMjL9asWes5bedFJsmrcg+Gb1nR_q6d7zzHRbun=28wPTDg@mail.gmail.com>
- References: <CACESMj+vSOmgzLDqczrpw6Qme5LttU_c4zQ0Jzkbrijk6ZxZig@mail.gmail.com> <20180316175708.211824qn6kwbotpc@mail.math.u-bordeaux.fr> <CACESMjLJTm_tRXGUnbrAgHVbZ90L_QLkMPkN8+KHC0X8FJdP=A@mail.gmail.com> <CACESMj+0MNDd_k8r=f5HuZ+Tpxsfo6y0CM1WW5PHQSLKTiMkFg@mail.gmail.com> <CABcj=tnAHc8-aE-KAg+0_M8ztkYqwX5NdYM21p3kBt5i9R_9iw@mail.gmail.com> <CACESMjL9asWes5bedFJsmrcg+Gb1nR_q6d7zzHRbun=28wPTDg@mail.gmail.com>
2018-03-19 11:59 GMT+02:00 kevin lucas <lucaskevin296@gmail.com>:
> I should have been clearer. The PARI manual shows how to integrate the
> product of a sine or cosine and a non-oscillating function. I was asking
> about functions that could not be expressed in this way, such as a Bessel
> function.
That's a quite specialized area. You may want to look at:
Joris Van Deun, Ronald Cools:
Integrating products of Bessel functions with an additional
exponential or rational factor. Computer Physics Communications
178(8): 578-590 (2008)