Karim Belabas on Sat, 27 Jan 2018 23:05:03 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Finding Closed Form Repesentations from Truncated Decimal Expansions |
* kevin lucas [2018-01-27 22:44]: > Hello all, > > I sometimes come across papers or talks in which PARI/GP is said to have > been used to establish or conjecture complicated integer relations, often > with a handwavy reference to LLL. I cannot, however, find an explicit > demonstration for even simple algebraic closed forms like (1+sqrt(5))/2. > How, for instance, could PARI find for > 0.22004376711264303785068975981048665667... the closed form > (1+sqrt(2))^2/(2^(9/4)*Pi^(3/2))? > Secondly, how can one incorporate more > exotic constants into the process, like multiple zeta values or values of > certain L-functions? Any help or references would of course be highly > appreciated. You probably want to look at lindep() and algdep(); algdep recognizes algebraic numbers, lindep finds "small" linear relations between arbitrary constants. It helps a lot to renormalize first so as to recognized the simplest possible numbers: (22:51) gp > 0.22004376711264303785068975981048665667 * Pi^(3/2) * 2^(9/4) %1 = 5.8284271247461900976033774484193961569 (22:51) gp > algdep(%,2) %2 = x^2 - 6*x + 1 (22:51) gp > 0.22004376711264303785068975981048665667 * Pi^(3/2) %3 = 1.2252758689416464406320940924551491289 (22:54) gp > algdep(%,8) \\ still works but a degree 8 number is harder... %5 = 512*x^5 - 768*x^3 - x (22:52) gp > vector(8, i, suminf(k=0, 16^-k / (8*k+i))) %4 = [1.0071844764146762286447601474504384966, 0.50647687666743048095593942496123862718, 0.33923024524519907251558532577879605207, 0.25541281188299534160275704815183096744, 0.20500255763642353394415033621849226687, 0.17131707066649745896673277400009690056, 0.14720193467263502719559812885341132709, 0.12907704227514234334584783136798585625] (22:52) gp > lindep(concat(%, Pi)) %5 = [-4, 0, 0, 2, 1, 1, 0, 0, 1]~ Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `