Karim Belabas on Thu, 24 Jan 2013 15:03:50 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Re : Field inclusion problem |
* Ewan Delanoy [2013-01-24 14:51]: > > nffactor(B, A) would factor A(X) over the number field Q[b] / (B(b)). > > ( a few seconds on such small inputs ) > > I tried that and obtained the following output : > > > ? nffactor(polynomial_called_b,polynomial_called_a) > *** at top-level: nffactor(polynomial_ca > *** ^-------------------- > *** nffactor: incorrect polynomial in rnf function. > *** Break loop: type 'break' to go back to GP > > I suppose itâs no use to do a âmy_field=nfinit(polynomial_called_b)â first ? The computation would be prohibitively long. The problem is variable priorities. The variable of the polynomial defining the "base field" must have *lower* priority then the variable of the polynomial to be factored. See ??nffactor ? A = x^2+1; ? B = y^2+1; ? nffactor(A,B) *** at top-level: nffactor(A,B) *** ^------------- *** nffactor: incorrect priority in nffactor: variable y >= x *** Break loop: type 'break' to go back to GP prompt ? nffactor(B,A) [x + Mod(-y, y^2 + 1) 1] [ x + Mod(y, y^2 + 1) 1] N.B. This is 2.6.*, the error messages in 2.5.* are a little less helpful :-) Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50 351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/ F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP] `