Karim Belabas on Fri, 20 Aug 2010 21:50:45 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Why is nfinit(f).zk not the same as nfbasis(f) ?? |
* Jeroen Demeyer [2010-08-19 21:30]: > With the svn version of PARI, I get: > > gp> f = x^3 + x^2 - 2*x + 8 > %1 = x^3 + x^2 - 2*x + 8 > gp> nfbasis(f) > %2 = [1, x, 1/2*x^2 - 1/2*x] > gp> nfinit(f).zk > %3 = [1, 1/2*x^2 + 1/2*x - 1, x] > > Is it normal to get different results here? I agree that a basis is not > canonical, but it's not clear to me why nfbasis() uses a different > algorithm than nfinit(). It is normal. nfinit() calls [the internal function underlying] nfbasis(), then spends some time finding a good LLL-reduced basis. Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50 351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/ F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP] `