herbert granzow on Sat, 23 Aug 2008 16:29:38 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
class number of IQ(2^{1/n}) A12-140
|
- To: pari-users@list.cr.yp.to
- Subject: class number of IQ(2^{1/n}) A12-140
- From: "herbert granzow" <herbertgranzow@googlemail.com>
- Date: Sat, 23 Aug 2008 16:27:56 +0200
- Delivery-date: Sat, 23 Aug 2008 16:29:38 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=googlemail.com; s=gamma; h=domainkey-signature:received:received:message-id:date:from:to :subject:mime-version:content-type:content-transfer-encoding :content-disposition; bh=8GcmFFkcI/2s+Huac8h/y7W/tfggfaOEl3Fz6QjvNrk=; b=AAxVAVveKuNS86lhPHgqO6Ua2G3Vyeu+uqY6yD9IXN3iIv6RYeXXMibabpgeW1z1pa ClT76i85ATtt5LtRYU09hr4OPweJxC+yrh2YRVShnODdBCs8xoXbtMAtdaGh69fUygTz j8H8zLTMX46s7H+L0Sh4njpIMhI1SVMihz9LE=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=googlemail.com; s=gamma; h=message-id:date:from:to:subject:mime-version:content-type :content-transfer-encoding:content-disposition; b=XBCSyE3uy25CylAbXLf9Dng1b98UIfVKQrslVVTmstsns/EN6jisvUmu2xS74V8Jly IWd9dT8ynjBI+GZN9HCY99x7aYxU2kd0DVjzWq68AWw3lJ+JykQM9Hsi5gRaokDxeqeM TCfRp5dSstCDdBsSIMJMZgAjmoxN1GLsC1VH0=
- Mailing-list: contact pari-users-help@list.cr.yp.to; run by ezmlm
Are there statements about the class number of IQ(2^{1/n}) (beside general
theorems like the Minkowski bound)?
Using PARI, I found that it equals 1 for n <= 46.
Does someone know a n for which the class number is > 1?
It can't be known that it is always 1 since this would solve an open
question.