Markus Endres on 27 Feb 2003 19:25:48 +0100


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

[Fwd: Re: nfgaloisconj]


-----Forwarded Message-----

> From: Bill Allombert <allomber@math.u-bordeaux.fr>
> To: pari-users@list.cr.yp.to
> Subject: Re: nfgaloisconj
> Date: 27 Feb 2003 16:24:58 +0100
> 
> On Thu, Feb 27, 2003 at 03:06:37PM +0100, markus endres wrote:
> > hi 
> > 
> > assume L|K|Q is a tower of fields (Q the rationals). 
> > L|K a galois extension.
> > 
> > then nfgaloisconj(L) determines the automorphisms from L over Q, hence
> > the galois group gal(L|Q) contains these automorphisms defined over Q.
> > 
> > but now, I want to compute the galois group gal(L|K).(ok, this is easy.
> > I look at the automorphisms of gal(L|Q) which fixes K pointwise). 
> > 
> > now, I have gal(L|K) with automorphisms defined over Q, but I need these
> > automorphisms defined over K. 
> > 
> > How can I do this?
> 


> Could you send us a practical computation you want to perform ?



of course, here it is:

? K=bnfinit(y^2+7);

? quadray(K,3)
%7 = x^4 + Mod(-y, y^2 + 7)*x^3 - 3*x^2 + Mod(y, y^2 + 7)*x + 1

? rnfequation(K,%)
%8 = x^8 + x^6 - 3*x^4 + x^2 + 1

? L=bnfinit(%);

? aut=nfgaloisconj(L)
%10 = [x, 1/2*x^7 - 1/2*x^6 + x^5 - 1/2*x^4 - 1/2*x^3 + x^2 - 1/2, x^7 + x^5 - 3*x^3 + x,
 1/2*x^7 + 1/2*x^6 + x^5 + 1/2*x^4 - 1/2*x^3 - x^2 + 1/2, -1/2*x^7 - 1/2*x^6 - x^5 - 1/2*x^4 + 1/2*x^3 + x^2 - 1/2, 
-x^7 - x^5 + 3*x^3 - x, -1/2*x^7 + 1/2*x^6 - x^5 + 1/2*x^4 + 1/2*x^3 - x^2 + 1/2, -x]~ 


now I need all the automorphisms in aut which leaves the elements of K fix, i.e. gal(L|K). 
but these automorphisms are defined absolute over Q, and I need them relative over K



thx


markus




> 
> Anyway, here is how I see the problem:
> 
> Suppose L is given by a polynomial P and G=galoisinit(P);
> (say P=x^4+1)
> 
> Suppose you know a subset H of G.group that generate gal(L|K).
> (say H=G.gen[1])
> Now compute
> 
> F=galoisfixedfield(G,H,2);
> ? F[3][1]
> %5 = x^2 - 1/2*y
> We convert it to a true relative polynomial with:
> R=F[3][1]*Mod(1,subst(F[1],x,y))
> 
> R is a relative polynomial defining K/L and have the nice property
> that it divides P.
> 
> Now galoispermtopol(G,H)%R is the definition of H over K.
> 
> Cheers,
> Bill.
-- 
markus endres 			phone : +49-(0)8291-9569
schwelcherstr. 4		fax   : +49-(0)8291-9568
86441 steinekirch		mobile: 0160-7539890

e-mail: me@mendres.org		web   : http://www.mendres.org
icq   : 43149758

-- 

'Was ich am Tageslicht gestaltete
ist nur ein Prozent dessen, 
was ich in der Dunkelheit sah.'

				M. C. Escher