Markus Endres on 27 Feb 2003 19:25:48 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
[Fwd: Re: nfgaloisconj] |
-----Forwarded Message----- > From: Bill Allombert <allomber@math.u-bordeaux.fr> > To: pari-users@list.cr.yp.to > Subject: Re: nfgaloisconj > Date: 27 Feb 2003 16:24:58 +0100 > > On Thu, Feb 27, 2003 at 03:06:37PM +0100, markus endres wrote: > > hi > > > > assume L|K|Q is a tower of fields (Q the rationals). > > L|K a galois extension. > > > > then nfgaloisconj(L) determines the automorphisms from L over Q, hence > > the galois group gal(L|Q) contains these automorphisms defined over Q. > > > > but now, I want to compute the galois group gal(L|K).(ok, this is easy. > > I look at the automorphisms of gal(L|Q) which fixes K pointwise). > > > > now, I have gal(L|K) with automorphisms defined over Q, but I need these > > automorphisms defined over K. > > > > How can I do this? > > Could you send us a practical computation you want to perform ? of course, here it is: ? K=bnfinit(y^2+7); ? quadray(K,3) %7 = x^4 + Mod(-y, y^2 + 7)*x^3 - 3*x^2 + Mod(y, y^2 + 7)*x + 1 ? rnfequation(K,%) %8 = x^8 + x^6 - 3*x^4 + x^2 + 1 ? L=bnfinit(%); ? aut=nfgaloisconj(L) %10 = [x, 1/2*x^7 - 1/2*x^6 + x^5 - 1/2*x^4 - 1/2*x^3 + x^2 - 1/2, x^7 + x^5 - 3*x^3 + x, 1/2*x^7 + 1/2*x^6 + x^5 + 1/2*x^4 - 1/2*x^3 - x^2 + 1/2, -1/2*x^7 - 1/2*x^6 - x^5 - 1/2*x^4 + 1/2*x^3 + x^2 - 1/2, -x^7 - x^5 + 3*x^3 - x, -1/2*x^7 + 1/2*x^6 - x^5 + 1/2*x^4 + 1/2*x^3 - x^2 + 1/2, -x]~ now I need all the automorphisms in aut which leaves the elements of K fix, i.e. gal(L|K). but these automorphisms are defined absolute over Q, and I need them relative over K thx markus > > Anyway, here is how I see the problem: > > Suppose L is given by a polynomial P and G=galoisinit(P); > (say P=x^4+1) > > Suppose you know a subset H of G.group that generate gal(L|K). > (say H=G.gen[1]) > Now compute > > F=galoisfixedfield(G,H,2); > ? F[3][1] > %5 = x^2 - 1/2*y > We convert it to a true relative polynomial with: > R=F[3][1]*Mod(1,subst(F[1],x,y)) > > R is a relative polynomial defining K/L and have the nice property > that it divides P. > > Now galoispermtopol(G,H)%R is the definition of H over K. > > Cheers, > Bill. -- markus endres phone : +49-(0)8291-9569 schwelcherstr. 4 fax : +49-(0)8291-9568 86441 steinekirch mobile: 0160-7539890 e-mail: me@mendres.org web : http://www.mendres.org icq : 43149758 -- 'Was ich am Tageslicht gestaltete ist nur ein Prozent dessen, was ich in der Dunkelheit sah.' M. C. Escher