Vasily Golyshev on Mon, 14 Oct 2002 00:33:08 +0400 (MSD) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
ellisoncurve() and ellpointtoz() |
Hi, here is an irregularity in ellisoncurve(): ? C=ellinit([0,0,0,0,1]) %1 = [0, 0, 0, 0, 1, 0, 0, 4, 0, 0, -864, -432, 0, [-1.000000000000000000000000000, 0.5000000000000000000000000000 - 0.8660254037844386467637231707*I, 0.5000000000000000000000000000 + 0.8660254037844386467637231707*I]~, 4.206546315976362783525057237, -2.103273157988181391762528618 + 1.214325323943790805909970844*I, -1.293554779614895267476757512 + 1.44309482 E-29*I, 0.6467773898074476337383787562 - 1.120251300333280219655206320*I, 5.108115717832556535122194506] ? ellisoncurve(C,[Mod(t,t^2-t+1),0]) %2 = 1 ? ellisoncurve(C,[1/2-sqrt(3)/2*I,0]) %3 = 0 Now, what I actually need for my purposes is to find (up to a sign) ellpointtoz() of a point, given only its abscissa, but it appears that I have to do ellpointtoz(C,[p[1],ellordinate(C,p[1])[1]]) first, which fails in this case.