Graham Herrick on Sat, 14 Sep 2002 15:09:04 -0500 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Bug in subresext |
Hi, I'm using Pari 2.1.1 on MacOS X (the version distributed by fink).I was doing some calculations and Pari said "*** bug in subresext, please report". This happens when inverting a polynomial modulo another polynomial when the coefficients (in Q) are fairly large.
One can reproduce this bug, at least on my machine, by reading in the data I've appended below. Sorry for the large size --- the bug doesn't seem to happen with polynomials with smaller coefficients.
For your info, the polynomial "ply" is the characteristic polynomial of the Hecke operator T_5 on cusp forms of weight 88, and the other polynomial is the first coefficient of a cuspidal eigenform. I'm trying to normalize this eigenvector, so need to invert the first coefficient. Everything works fine with the same calculations up to weight 86. In particular it works in weight 84, where the characteristic polynomial also has degree 7.
This happens with a stack size up to 512 MB. I set the debug level to 4 and it didn't report any additional information. With the memory debug level at 4, it says
new bloc, size 119 (no 62): 002a362c new bloc, size 969 (no 63): 002aa51c *** bug in subresext, please report killing bloc (no 62): 002a362c killing bloc (no 63): 002aa51cSo it doesn't appear to be a memory problem (at least not an obvious memory problem).
Perhaps this has been fixed in subsequent releases? I did a quick search for subresext in the online version histories and didn't find anything.
Thanks for any help! Regards, Graham p.s. You can also reply to herrick (at) math.northwestern.eduply = x^7 - 330373100841196567453715678850*x^6 - 27454637116597781099764630240247455860681232063089728647387500*x^5 - 12254614456003642941502499636378441724220623178074754159491805763418562754601397370765625000* x^4 + 174503643136586025133801567089728177325970177720892469125260754740570048019457296328670518649157335192195487351074218750000* x^3 + 83568693710880441319689349497913851727029023903525036233309796932775273553155429559779653474280692161321598199791214082364322092550897598266601562500000* x^2 - 295235265862672413714106315379535101098373504568690802922575008814432439084965547649824891831718081827345041623832782004960797901628522642774431341009437316097319126129150390625000000* x - 158754767573118537391494161435002861221639597086176783804946046471803893125111367620667569724098380364480393879032557338374348773330988358343388097186101605308690724434563134479958534939214587211608886718750000000;
eig = Mod
(4166081208812889384519028909184142067762531298862832978403782004273737426804509834241535300976644917647272048910752373018786743663229487796789174980187188792455460693155852576653061991347709007536213900669240479348969073472646477635873418672829015152504811348419864549613494886150971715783657290725195726524317948209763830116255108275768814717444554138670752863774843271828551831120342278574093663/ 263934646670180220545619943389437693319334010446750517837952704102409755166075036350105179788653213683267871677906714302620799890834556572265281238408713676068335799465250085267299536105624323573940941159268698571101693275448960372464324708430346342810736352673879447292590870910712939224796004666194679434885333125838621101961079577363486902177892637166455037749059859889421698112520278988431383441663511097337826444094133442726425993648098451438975135359135968061252419006491540624220321950880354592179848973192915726862087753643195785767642827893621155128836152590755767055474218750000000000000000000000000000000*x^6 - 266055077570155898586727527228881069689711781126513934838388338312357850627072246941389246807786155373792777705692598345192172895092473543862996397977916183590157274320139836820827037666242927187971856218486489898530754560394851148004369521048105937417141032372290305599574041328069817001786378585307454431524798229754388374305403609505953881004458075523680693706258258227155795089114081792451492773196473418322975156173147/
20460050129471334926017049875150208784444496933856629289763775511814709702796514445744587580515752998702935788985016612606263557429035393198859010729357649307622930191104657772658878767877854540615576834051837098535014982592942664532118194451964832776026073850688329247487664411683173583317519741565479025960103343088265201702409269563061000168828886602050778120082159681350519233528703797552820421834380705219986546053808794009800464623883600886742258554971780469864528605154382994125606352781422836603089067689373312159851763848309750834700994410358229079754740510911299771742187500000000000000000000000000000*x^5 - 17894635403001334419942551596096279427918896037596154303833026272380287835902549858778036851781898406123499872165487094212923727930075991114659482001899692189844396125693162639062849541144217742690045672211295629971955395505151034745507235998591992612963069200830671935189432946928864369759765965925087889333281429093362849666967478509284818173774616014862266180812820096506020768587974917292823329759646926961855834993613663320936136342001967301388169/
41646492571231592985502160692613442732833768906785091572063543053634675371372786800805551051464017938188224327874826714417483217488687427576375737815970599774096378613846167300560084592603443561963067638543384389917426946816404003544666620659620724703863724287791628764116902707804803033498383379281211745149559467587948102873543128578064994426491934858612234753303330949021175244579136724012841568704301553820564330429054586623499170595360702396682467117812381548126614438894128698101825948856860685156583664409138576230704182034429315308503799273155211854648702578423000718812500000000000000000000000000000*x^4 + 49265843882020457266905937096483564520129420553545090150360979341651375378748277342307309378375309729762930326043314908511304495701857405797837214915164298940506261570089995676707578832800288329306710333325742504944808992205955314825490072235538376538967622699823440922083817115706478005173813702943621850471854791910014948130398147795935147593508336091427246435355858249179982044601172017479778246677913765473733202982372972924148870820332671451632055032154886483630667826188629/
1407651448907627842909973031410334364369781389049336095135747755212852027552400193867227625539483806310761982282169142947310932751117635052081499938179806272364457597148000454758930859229996392394351686182766392379209030802394455319809731778295180494990593880927357052227151311523802342532245358219704956986055110004472645877125757745938596811615427398221093534661652586076915723266774821271634045022205392519135074368502045027874271966123191741007867388582058496326679568034621549995841717071361891158292527857028883876597801352763710857427428415432646160687126147150697424295862500000000000000000000000000*x^3 + 100045400153897520095991599330893536467318741208780164102433873202813536700354550057018182315804188308701474814187667188500026359879969165716780064926449860869852033141694593216635397601872367345782490076296046633022947058181135528781959884672106839294955606132592912015746662514228935512124473611601939392791347117151883849633502785711246547443813619513455192021849035167915098638520693353837896983627176491536004380829780118183824518868820158461224240503015481770128914167688576000315276981382596472054299/
36035877092035272778495309604104559727866403559663004035475142533449011905341444963001027213810785441555506746423530059451159878428611457333286398417403040572530114486988811641828629996287907645295403166278819644907751188541298056187129133524356620671759203351740340537015073575009339968825481170424446898843010816114499734454419398296028078377354941394459994487338306203569042515629435424553831552568458048489857903833652352713581362332753708569801405147700697505962996941686311679893547957026864413652288713139939427240903714630750997950142167435075741713590429367057854061974080000000000000000000000*x^2 - 33717073322666861244381025694059067564530810062365439376723258241103787702763953798818346044595632122183791855277927091301126629237184595938646984786201180873118223344390626646549950867330033739724665259851462706222458924552523006324935013222761349897275088535478543063072905155752912201016768312812182044121832928929927403222416148050263269649938735963564138287715666680978095572290338241425289830227638094008641235608702581208932459089099906172076100433069091644995412450136987471437215808622210415598202211533176825006797903/
131788350508014711875639989409296675576197133018196129044023378408042100682391570150403756667650872471974424672634624217421384698253207615390304542783645405522395847266701939718687561129281490817080331579533968987091204346665318605484357974031932784171005086543507531106797983360034157600276045423266548658625868127504456171719019513768331258065755214242596551267980091258766784057159078124082583963678932291620051762591642889923954696531213562769559424540162550878950388815309939857896403957126818427071227293768921333909590727792460792503377069476848426838273570256668723426648064000000000000*x - 11618750746187199706732363084875153021461912056649131394487618975219222112944257449861338685915249888356259786239708043518348469186043172226070062422295738949534242392522499083552825373371738580589952567548792981524513209973625435590855104571543350243663756551971452376552711833222302471138506196350506226755275882965840252881084077198619980921837857744422165977355495359442565599414158589307208693593203539011066509730921123816733780628621849868956762684845753343049595013485914491062100537431695838637852003003339459234537541953363144560957762173/
2487581030787227003883047910693452456959002105265121403522210866172075780622469453161538190371880062881139370779315303200728072461037504113542338282220329866450384287577931544183153227583119752934382664284659617378458861769314032295225485076658049234859155919272842614808500183606912025487238166146081950717656939402111762577700939762189331027821812707546891585224177206432759205060477345604803059517183901688828258154725204042066905239593782272369195405145188057143690288421702827916791108794430637222505746522016137252044624981741564083381716481922447725021053197102834521454149632, ply); einv = Mod(1,ply)/eig;