Igor Schein on Fri, 4 Jun 1999 16:25:26 -0400 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: rank=8, torsion group=Z/2Z*Z/2Z |
On Fri, Jun 04, 1999 at 04:10:38PM -0400, Igor Schein wrote: > On Mon, Apr 26, 1999 at 10:52:55AM -0400, Andrej Dujella wrote: > > I found three examples of elliptic cuves over Q > > with torsion group isomorphic to Z/2Z * Z/2Z > > and with rank = 8. > > This improves my previous examples with rank = 7 > > (see A. Dujella: Diophantine triples and construction of > > high-rank elliptic curves over Q with three non-trivial > > 2-torsion points, Rocky Mountain J. Math., to appear). > > > > These elliptic curves are > > > > y^2=x*[x+(b-a)(d-c)]*[x+(c-a)(d-b)], > > > > where (a,b,c,d)= > > (32/91, 60/91, 1878240/1324801, 15343900/12215287), > > (17/448, 2145/448, 23460/7, 2352/7921) and > > (559/1380, 252/115, 24264935/2979076, 16454108/1703535). > [snip] > > I decided to verify this with development version of PARI, with > Doud's algorithm implemented: > > ? f(a,b,c,d)=x*(x+(b-a)*(d-c))*(x+(c-a)*(d-b)); > ? a=[32/91,17/448,559/1380]; > ? b=[60/91,2145/448,252/115]; > ? c=[1878240/1324801,23460/7,24264935/2979076] > [1878240/1324801, 23460/7, 24264935/2979076] > ? d=[15343900/12215287,2352/7921,16454108/1703535] > [15343900/12215287, 2352/7921, 16454108/1703535] > ? cubic(n)=f(a[n],b[n],c[n],d[n]); > ? Ell(n)=local(t);t=cubic(n);ellinit([0,polcoeff(t,2),0,polcoeff(t,1),polcoeff(t,0)]); > ? elltors(Ell(1)) > [2, [2], [[0, 0]]] > ? elltors(Ell(2)) > [2, [2], [[0, 0]]] > ? elltors(Ell(3)) > [2, [2], [[0, 0]]] > > So PARI thinks the torsion groups are isomorphic to Z/2Z, > contrary to what Dr. Dujella's findings. > > I looked at it many times, and I believe I set it up correctly. So > looks like it's a PARI bug. > > Thanks > > Igor On the other hand, if I use the integral model and reduce the curves globally, it works fine: ? f(a,b,c,d)=x*(x+(b-a)*(d-c))*(x+(c-a)*(d-b)); ? a=[32/91,17/448,559/1380]; ? b=[60/91,2145/448,252/115]; ? c=[1878240/1324801,23460/7,24264935/2979076]; ? d=[15343900/12215287,2352/7921,16454108/1703535]; ? cubic(n)=f(a[n],b[n],c[n],d[n]); ? Ell(n)=local(t);t=cubic(n);[0,polcoeff(t,2),0,polcoeff(t,1),polcoeff(t,0)]; ? changecurve(v)=local(E);E=ellinit(v);E=ellchangecurve(E,ellglobalred(E)[2]);[E[1],E[2],E[3],E[4],E[5]]; ? elltors(ellinit(changecurve(Ell(1)))) [4, [2, 2], [[293424555922235/4, -293424555922235/8], [58479762744360, -29239881372180]]] ? elltors(ellinit(changecurve(Ell(2)))) [4, [2, 2], [[7516680352875/4, -7516680352879/8], [2223647732595, -1111823866298]]] ? elltors(ellinit(changecurve(Ell(3)))) [4, [2, 2], [[2813046327973891583/4, -2813046327973891583/8], [812142518073808192, -406071259036904096]]] So the bug is definitely related to handling non-integral coefficients. Thanks Igor