Ilya Zakharevich on Wed, 23 Sep 1998 21:38:49 -0400 (EDT) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Fixing valence of PARI functions |
This patch makes all valences to have unique correspondence valence ===> code outside of valence==0 and valence==99. I would do the same for valence==0, but the comment several rows below stops me. Should I proceed? This is not important for GP (valences are ignored now) but may be important for calling functions from a compiled high-level language - the constant reparsing of the ep->code may slow down things significantly. (Perl interface to PARI is actively using valences.) Enjoy, Ilya P.S. This patch does not change anything but ep->valence. I think it is a minimal possible intervention which satisfies the above property. --- ./src/language/init.c~ Fri Sep 11 21:12:30 1998 +++ ./src/language/init.c Tue Sep 22 00:01:00 1998 @@ -1208,2 +1208,5 @@ Str0(char *s) { return strtoGEN(s, strle * Valence 0 reserved for functions without mandatory args. + * Valence 99 reserved for codes which do not correspond 1-to-1 to valences. + * Any other valence (what to do with 0?) should correspond to exactly + * one code. */ @@ -1220,3 +1223,3 @@ entree functions_basic[]={ {"Polrev",14,(void*)gtopolyrev,2,"GDn"}, -{"Qfb",3,(void*)Qfb0,2,"GGGDGp"}, +{"Qfb",99,(void*)Qfb0,2,"GGGDGp"}, {"Ser",14,(void*)gtoser,2,"GDn"}, @@ -1229,5 +1232,5 @@ entree functions_basic[]={ {"addprimes",0,(void*)addprimes,4,"D[],G,"}, -{"agm",2,(void*)agm,3,"GGp"}, -{"algdep",23,(void*)algdep0,8,"GLD0,L,p"}, -{"alias",2,(void*)alias0,11,"vrr"}, +{"agm",29,(void*)agm,3,"GGp"}, +{"algdep",99,(void*)algdep0,8,"GLD0,L,p"}, +{"alias",99,(void*)alias0,11,"vrr"}, {"arg",1,(void*)garg,3,"Gp"}, @@ -1238,6 +1241,6 @@ entree functions_basic[]={ {"bernfrac",11,(void*)bernfrac,3,"L"}, -{"bernreal",11,(void*)bernreal,3,"Lp"}, +{"bernreal",99,(void*)bernreal,3,"Lp"}, {"bernvec",11,(void*)bernvec,3,"L"}, -{"besseljh",2,(void*)jbesselh,3,"GGp"}, -{"besselk",2,(void*)kbessel0,3,"GGD0,L,p"}, +{"besseljh",29,(void*)jbesselh,3,"GGp"}, +{"besselk",99,(void*)kbessel0,3,"GGD0,L,p"}, {"bestappr",2,(void*)bestappr,4,"GG"}, @@ -1245,4 +1248,4 @@ entree functions_basic[]={ {"bezoutres",2,(void*)vecbezoutres,4,"GG"}, -{"bigomega",1,(void*)gbigomega,4,"G"}, -{"binary",1,(void*)binaire,2,"G"}, +{"bigomega",18,(void*)gbigomega,4,"G"}, +{"binary",18,(void*)binaire,2,"G"}, {"binomial",21,(void*)binome,4,"GL"}, @@ -1250,18 +1253,18 @@ entree functions_basic[]={ {"bnfcertify",10,(void*)certifybuchall,6,"Gl"}, -{"bnfclassunit",1,(void*)bnfclassunit0,6,"GD0,L,DGp"}, -{"bnfclgp",1,(void*)classgrouponly,6,"GDGp"}, +{"bnfclassunit",99,(void*)bnfclassunit0,6,"GD0,L,DGp"}, +{"bnfclgp",99,(void*)classgrouponly,6,"GDGp"}, {"bnfdecodemodule",2,(void*)decodemodule,6,"GG"}, {"bnfinit",91,(void*)bnfinit0,6,"GD0,L,DGp"}, -{"bnfisintnorm",3,(void*)bnfisintnorm,6,"GG"}, -{"bnfisnorm",3,(void*)bnfisnorm,6,"GGD1,L,p"}, -{"bnfisprincipal",2,(void*)isprincipalall,6,"GGD1,L,"}, -{"bnfissunit",2,(void*)bnfissunit,6,"GGG"}, +{"bnfisintnorm",99,(void*)bnfisintnorm,6,"GG"}, +{"bnfisnorm",99,(void*)bnfisnorm,6,"GGD1,L,p"}, +{"bnfisprincipal",99,(void*)isprincipalall,6,"GGD1,L,"}, +{"bnfissunit",99,(void*)bnfissunit,6,"GGG"}, {"bnfisunit",2,(void*)isunit,6,"GG"}, {"bnfmake",1,(void*)bnfmake,6,"Gp"}, -{"bnfnarrow",91,(void*)buchnarrow,6,"G"}, -{"bnfreg",1,(void*)regulator,6,"GDGp"}, -{"bnfsignunit",1,(void*)signunits,6,"G"}, -{"bnfsunit",1,(void*)bnfsunit,6,"GGp"}, +{"bnfnarrow",18,(void*)buchnarrow,6,"G"}, +{"bnfreg",99,(void*)regulator,6,"GDGp"}, +{"bnfsignunit",18,(void*)signunits,6,"G"}, +{"bnfsunit",99,(void*)bnfsunit,6,"GGp"}, {"bnfunit",1,(void*)buchfu,6,"Gp"}, -{"bnrclass",2,(void*)bnrclass0,6,"GGD0,L,p"}, +{"bnrclass",99,(void*)bnrclass0,6,"GGD0,L,p"}, {"bnrclassno",2,(void*)rayclassno,6,"GG"}, @@ -1269,25 +1272,25 @@ entree functions_basic[]={ {"bnrconductor",62,(void*)bnrconductor,6,"GD0,G,D0,G,D0,L,p"}, -{"bnrconductorofchar",2,(void*)bnrconductorofchar,6,"GGp"}, +{"bnrconductorofchar",29,(void*)bnrconductorofchar,6,"GGp"}, {"bnrdisc",62,(void*)bnrdisc0,6,"GD0,G,D0,G,D0,L,p"}, -{"bnrdisclist",32,(void*)bnrdisclist0,6,"GGD0,G,D0,L,"}, -{"bnrinit",2,(void*)bnrinit0,6,"GGD0,L,p"}, -{"bnrisconductor",62,(void*)bnrisconductor,6,"GD0,G,D0,G,pl"}, -{"bnrisprincipal",2,(void*)isprincipalrayall,6,"GGD1,L,"}, -{"bnrrootnumber",2,(void*)bnrrootnumber,6,"GGD0,L,p"}, -{"bnrstark",3,(void*)bnrstark,6,"GGD0,L,p"}, +{"bnrdisclist",99,(void*)bnrdisclist0,6,"GGD0,G,D0,L,"}, +{"bnrinit",99,(void*)bnrinit0,6,"GGD0,L,p"}, +{"bnrisconductor",99,(void*)bnrisconductor,6,"GD0,G,D0,G,pl"}, +{"bnrisprincipal",99,(void*)isprincipalrayall,6,"GGD1,L,"}, +{"bnrrootnumber",99,(void*)bnrrootnumber,6,"GGD0,L,p"}, +{"bnrstark",99,(void*)bnrstark,6,"GGD0,L,p"}, {"break",0,(void*)break0,11,"vD1,L,"}, -{"ceil",1,(void*)gceil,2,"G"}, -{"centerlift",1,(void*)centerlift0,2,"GDn"}, +{"ceil",18,(void*)gceil,2,"G"}, +{"centerlift",99,(void*)centerlift0,2,"GDn"}, {"changevar",2,(void*)changevar,2,"GG"}, -{"charpoly",14,(void*)charpoly0,8,"GDnD0,L,"}, +{"charpoly",99,(void*)charpoly0,8,"GDnD0,L,"}, {"chinese",2,(void*)chinois,4,"GG"}, {"component",21,(void*)compo,2,"GL"}, -{"concat",2,(void*)concat,8,"GDG"}, -{"conj",1,(void*)gconj,2,"G"}, +{"concat",99,(void*)concat,8,"GDG"}, +{"conj",18,(void*)gconj,2,"G"}, {"conjvec",1,(void*)conjvec,2,"Gp"}, -{"content",1,(void*)content,4,"G"}, -{"contfrac",1,(void*)sfcont0,4,"GD0,G,D0,L,"}, -{"contfracpnqn",1,(void*)pnqn,4,"G"}, -{"core",1,(void*)core0,4,"GD0,L,"}, -{"coredisc",1,(void*)coredisc0,4,"GD0,L,"}, +{"content",18,(void*)content,4,"G"}, +{"contfrac",99,(void*)sfcont0,4,"GD0,G,D0,L,"}, +{"contfracpnqn",18,(void*)pnqn,4,"G"}, +{"core",99,(void*)core0,4,"GD0,L,"}, +{"coredisc",99,(void*)coredisc0,4,"GD0,L,"}, {"cos",1,(void*)gcos,3,"Gp"}, @@ -1295,3 +1298,3 @@ entree functions_basic[]={ {"cotan",1,(void*)gcotan,3,"Gp"}, -{"denominator",1,(void*)denom,2,"G"}, +{"denominator",18,(void*)denom,2,"G"}, {"deriv",14,(void*)deriv,7,"GDn"}, @@ -1299,6 +1302,6 @@ entree functions_basic[]={ {"dirdiv",2,(void*)dirdiv,7,"GG"}, -{"direuler",83,(void*)direuler,7,"V=GGI"}, +{"direuler",99,(void*)direuler,7,"V=GGI"}, {"dirmul",2,(void*)dirmul,7,"GG"}, {"dirzetak",2,(void*)dirzetak,6,"GG"}, -{"divisors",1,(void*)divisors,4,"G"}, +{"divisors",18,(void*)divisors,4,"G"}, {"divrem",2,(void*)gdiventres,1,"GG"}, @@ -1308,10 +1311,10 @@ entree functions_basic[]={ {"ellan",23,(void*)anell,5,"GL"}, -{"ellap",2,(void*)ellap0,5,"GGD0,L,"}, -{"ellbil",3,(void*)bilhell,5,"GGGp"}, +{"ellap",25,(void*)ellap0,5,"GGD0,L,"}, +{"ellbil",99,(void*)bilhell,5,"GGGp"}, {"ellchangecurve",2,(void*)coordch,5,"GG"}, {"ellchangepoint",2,(void*)pointch,5,"GG"}, -{"ellglobalred",1,(void*)globalreduction,5,"G"}, -{"ellheight",2,(void*)ellheight0,5,"GGD0,L,p"}, -{"ellheightmatrix",2,(void*)mathell,5,"GGp"}, -{"ellinit",1,(void*)ellinit0,5,"GD0,L,p"}, +{"ellglobalred",18,(void*)globalreduction,5,"G"}, +{"ellheight",99,(void*)ellheight0,5,"GGD0,L,p"}, +{"ellheightmatrix",29,(void*)mathell,5,"GGp"}, +{"ellinit",99,(void*)ellinit0,5,"GD0,L,p"}, {"ellisoncurve",20,(void*)oncurve,5,"GGl"}, @@ -1319,32 +1322,32 @@ entree functions_basic[]={ {"elllocalred",2,(void*)localreduction,5,"GG"}, -{"elllseries",4,(void*)lseriesell,5,"GGDGp"}, +{"elllseries",99,(void*)lseriesell,5,"GGDGp"}, {"ellorder",2,(void*)orderell,5,"GG"}, -{"ellordinate",2,(void*)ordell,5,"GGp"}, -{"ellpointtoz",2,(void*)zell,5,"GGp"}, -{"ellpow",3,(void*)powell,5,"GGGp"}, -{"ellrootno",2,(void*)ellrootno,5,"GD1,G,l"}, -{"ellsub",3,(void*)subell,5,"GGGp"}, +{"ellordinate",29,(void*)ordell,5,"GGp"}, +{"ellpointtoz",29,(void*)zell,5,"GGp"}, +{"ellpow",99,(void*)powell,5,"GGGp"}, +{"ellrootno",99,(void*)ellrootno,5,"GD1,G,l"}, +{"ellsub",99,(void*)subell,5,"GGGp"}, {"elltaniyama",1,(void*)taniyama,5,"Gp"}, {"elltors",1,(void*)torsell,5,"Gp"}, -{"ellwp",1,(void*)weipell,5,"GP"}, -{"ellztopoint",2,(void*)pointell,5,"GGp"}, +{"ellwp",99,(void*)weipell,5,"GP"}, +{"ellztopoint",29,(void*)pointell,5,"GGp"}, {"erfc",1,(void*)gerfc,3,"Gp"}, -{"eta",1,(void*)eta0,3,"GD0,L,p"}, -{"eulerphi",1,(void*)gphi,4,"G"}, -{"eval",1,(void*)geval,7,"G"}, +{"eta",99,(void*)eta0,3,"GD0,L,p"}, +{"eulerphi",18,(void*)gphi,4,"G"}, +{"eval",18,(void*)geval,7,"G"}, {"exp",1,(void*)gexp,3,"Gp"}, -{"factor",1,(void*)factor0,4,"GD-1,L,"}, -{"factorback",1,(void*)factorback,4,"GDG"}, +{"factor",99,(void*)factor0,4,"GD-1,L,"}, +{"factorback",99,(void*)factorback,4,"GDG"}, {"factorcantor",2,(void*)factcantor,4,"GG"}, {"factorff",3,(void*)factmod9,4,"GGG"}, -{"factorial",11,(void*)mpfactr,4,"Lp"}, -{"factorint",1,(void*)factorint,4,"GD0,L,"}, -{"factormod",2,(void*)factormod0,4,"GGD0,L,"}, +{"factorial",99,(void*)mpfactr,4,"Lp"}, +{"factorint",99,(void*)factorint,4,"GD0,L,"}, +{"factormod",25,(void*)factormod0,4,"GGD0,L,"}, {"factornf",2,(void*)polfnf,6,"GG"}, -{"factorpadic",32,(void*)factorpadic0,7,"GGLD0,L,"}, -{"ffinit",21,(void*)ffinit,4,"GLDn"}, +{"factorpadic",99,(void*)factorpadic0,7,"GGLD0,L,"}, +{"ffinit",99,(void*)ffinit,4,"GLDn"}, {"fibonacci",11,(void*)fibo,4,"L"}, -{"floor",1,(void*)gfloor,2,"G"}, +{"floor",18,(void*)gfloor,2,"G"}, {"for",83,(void*)forpari,11,"vV=GGI"}, -{"fordiv",84,(void*)fordiv,11,"GVI"}, +{"fordiv",84,(void*)fordiv,11,"vGVI"}, {"forprime",83,(void*)forprime,11,"vV=GGI"}, @@ -1352,6 +1355,6 @@ entree functions_basic[]={ {"forvec",87,(void*)forvec,11,"vV=GID0,L,"}, -{"frac",1,(void*)gfrac,2,"G"}, +{"frac",18,(void*)gfrac,2,"G"}, {"gamma",1,(void*)ggamma,3,"Gp"}, {"gammah",1,(void*)ggamd,3,"Gp"}, -{"gcd",2,(void*)gcd0,4,"GGD0,L,"}, +{"gcd",25,(void*)gcd0,4,"GGD0,L,"}, {"getheap",0,(void*)getheap,11,""}, @@ -1360,63 +1363,63 @@ entree functions_basic[]={ {"gettime",0,(void*)gettime,11,""}, -{"hilbert",30,(void*)hil0,4,"GGDGl"}, -{"hyperu",3,(void*)hyperu,3,"GGGp"}, +{"hilbert",99,(void*)hil0,4,"GGDGl"}, +{"hyperu",99,(void*)hyperu,3,"GGGp"}, {"idealadd",3,(void*)idealadd,6,"GGG"}, -{"idealaddtoone",3,(void*)idealaddtoone0,6,"GGDG"}, -{"idealappr",2,(void*)idealappr0,6,"GGD0,L,"}, +{"idealaddtoone",99,(void*)idealaddtoone0,6,"GGDG"}, +{"idealappr",25,(void*)idealappr0,6,"GGD0,L,"}, {"idealchinese",3,(void*)idealchinese,6,"GGG"}, {"idealcoprime",3,(void*)idealcoprime,6,"GGG"}, -{"idealdiv",3,(void*)idealdiv0,6,"GGGD0,L,"}, +{"idealdiv",99,(void*)idealdiv0,6,"GGGD0,L,"}, {"idealfactor",2,(void*)idealfactor,6,"GG"}, -{"idealhnf",2,(void*)idealhnf0,6,"GGDG"}, +{"idealhnf",99,(void*)idealhnf0,6,"GGDG"}, {"idealintersect",3,(void*)idealintersect,6,"GGG"}, -{"idealinv",2,(void*)idealinv0,6,"GGD0,L,"}, -{"ideallist",21,(void*)ideallist0,6,"GLD4,L,"}, -{"ideallistarch",3,(void*)ideallistarch0,6,"GGDGD0,L,"}, -{"ideallog",3,(void*)zideallog,6,"GGGp"}, -{"idealmin",3,(void*)minideal,6,"GGGp"}, -{"idealmul",3,(void*)idealmul0,6,"GGGD0,L,p"}, +{"idealinv",25,(void*)idealinv0,6,"GGD0,L,"}, +{"ideallist",99,(void*)ideallist0,6,"GLD4,L,"}, +{"ideallistarch",99,(void*)ideallistarch0,6,"GGDGD0,L,"}, +{"ideallog",99,(void*)zideallog,6,"GGGp"}, +{"idealmin",99,(void*)minideal,6,"GGGp"}, +{"idealmul",99,(void*)idealmul0,6,"GGGD0,L,p"}, {"idealnorm",2,(void*)idealnorm,6,"GG"}, -{"idealpow",3,(void*)idealpow0,6,"GGGD0,L,p"}, -{"idealprimedec",2,(void*)primedec,6,"GGp"}, +{"idealpow",99,(void*)idealpow0,6,"GGGD0,L,p"}, +{"idealprimedec",29,(void*)primedec,6,"GGp"}, {"idealprincipal",2,(void*)principalideal,6,"GG"}, -{"idealred",3,(void*)ideallllred,6,"GGD0,G,p"}, -{"idealstar",2,(void*)idealstar0,6,"GGD1,L,"}, -{"idealtwoelt",2,(void*)ideal_two_elt0,6,"GGDG"}, +{"idealred",99,(void*)ideallllred,6,"GGD0,G,p"}, +{"idealstar",99,(void*)idealstar0,6,"GGD1,L,"}, +{"idealtwoelt",99,(void*)ideal_two_elt0,6,"GGDG"}, {"idealval",30,(void*)idealval,6,"GGGl"}, -{"ideleprincipal",2,(void*)principalidele,6,"GGp"}, +{"ideleprincipal",29,(void*)principalidele,6,"GGp"}, {"if",80,NULL,11,NULL}, -{"imag",1,(void*)gimag,2,"G"}, -{"incgam",2,(void*)incgam0,3,"GGD0,G,p"}, -{"incgamc",2,(void*)incgam3,3,"GGp"}, +{"imag",18,(void*)gimag,2,"G"}, +{"incgam",99,(void*)incgam0,3,"GGD0,G,p"}, +{"incgamc",29,(void*)incgam3,3,"GGp"}, {"intformal",14,(void*)integ,7,"GDn"}, -{"intnum",37,(void*)intnum0,9,"V=GGID0,L,p"}, -{"isfundamental",1,(void*)gisfundamental,4,"G"}, -{"isprime",1,(void*)gisprime,4,"G"}, -{"ispseudoprime",1,(void*)gispsp,4,"G"}, -{"issquare",1,(void*)gcarreparfait,4,"G"}, -{"issquarefree",1,(void*)gissquarefree,4,"G"}, +{"intnum",99,(void*)intnum0,9,"V=GGID0,L,p"}, +{"isfundamental",18,(void*)gisfundamental,4,"G"}, +{"isprime",18,(void*)gisprime,4,"G"}, +{"ispseudoprime",18,(void*)gispsp,4,"G"}, +{"issquare",18,(void*)gcarreparfait,4,"G"}, +{"issquarefree",18,(void*)gissquarefree,4,"G"}, {"kronecker",2,(void*)gkronecker,4,"GG"}, {"lcm",2,(void*)glcm,4,"GG"}, -{"length",1,(void*)glength,2,"G"}, +{"length",18,(void*)glength,2,"G"}, {"lex",20,(void*)lexcmp,2,"GGl"}, -{"lift",1,(void*)lift0,2,"GDn"}, -{"lindep",1,(void*)lindep0,8,"GD0,L,p"}, +{"lift",99,(void*)lift0,2,"GDn"}, +{"lindep",99,(void*)lindep0,8,"GD0,L,p"}, {"listcreate",11,(void*)listcreate,8,"L"}, -{"listinsert",3,(void*)listinsert,8,"GGL"}, -{"listkill",1,(void*)listkill,8,"vG"}, -{"listput",2,(void*)listput,8,"GGD0,L,"}, -{"listsort",1,(void*)listsort,8,"GD0,L,"}, +{"listinsert",99,(void*)listinsert,8,"GGL"}, +{"listkill",99,(void*)listkill,8,"vG"}, +{"listput",25,(void*)listput,8,"GGD0,L,"}, +{"listsort",99,(void*)listsort,8,"GD0,L,"}, {"lngamma",1,(void*)glngamma,3,"Gp"}, -{"log",1,(void*)log0,3,"GD0,L,p"}, -{"matadjoint",1,(void*)adj,8,"G"}, +{"log",99,(void*)log0,3,"GD0,L,p"}, +{"matadjoint",18,(void*)adj,8,"G"}, {"matalgtobasis",2,(void*)matalgtobasis,6,"GG"}, {"matbasistoalg",2,(void*)matbasistoalg,6,"GG"}, -{"matcompanion",1,(void*)assmat,8,"G"}, -{"matdet",1,(void*)det0,8,"GD0,L,"}, -{"matdetint",1,(void*)detint,8,"G"}, -{"matdiagonal",1,(void*)diagonal,8,"G"}, +{"matcompanion",18,(void*)assmat,8,"G"}, +{"matdet",99,(void*)det0,8,"GD0,L,"}, +{"matdetint",18,(void*)detint,8,"G"}, +{"matdiagonal",18,(void*)diagonal,8,"G"}, {"mateigen",1,(void*)eigen,8,"Gp"}, -{"mathess",1,(void*)hess,8,"G"}, +{"mathess",18,(void*)hess,8,"G"}, {"mathilbert",11,(void*)mathilbert,8,"L"}, -{"mathnf",1,(void*)mathnf0,8,"GD0,L,"}, +{"mathnf",99,(void*)mathnf0,8,"GD0,L,"}, {"mathnfmod",2,(void*)hnfmod,8,"GG"}, @@ -1424,5 +1427,5 @@ entree functions_basic[]={ {"matid",11,(void*)idmat,8,"L"}, -{"matimage",1,(void*)matimage0,8,"GD0,L,"}, -{"matimagecompl",1,(void*)imagecompl,8,"G"}, -{"matindexrank",1,(void*)indexrank,8,"G"}, +{"matimage",99,(void*)matimage0,8,"GD0,L,"}, +{"matimagecompl",18,(void*)imagecompl,8,"G"}, +{"matindexrank",18,(void*)indexrank,8,"G"}, {"matintersect",2,(void*)intersect,8,"GG"}, @@ -1430,4 +1433,4 @@ entree functions_basic[]={ {"matisdiagonal",10,(void*)isdiagonal,8,"Gl"}, -{"matker",1,(void*)matker0,8,"GD0,L,p"}, -{"matkerint",1,(void*)matkerint0,8,"GD0,L,"}, +{"matker",99,(void*)matker0,8,"GD0,L,p"}, +{"matkerint",99,(void*)matkerint0,8,"GD0,L,"}, {"matmuldiagonal",2,(void*)matmuldiagonal,8,"GG"}, @@ -1438,15 +1441,15 @@ entree functions_basic[]={ {"matrixqz",2,(void*)matrixqz0,8,"GG"}, -{"matsize",1,(void*)matsize,8,"G"}, -{"matsnf",1,(void*)matsnf0,8,"GD0,L,"}, +{"matsize",18,(void*)matsize,8,"G"}, +{"matsnf",99,(void*)matsnf0,8,"GD0,L,"}, {"matsolve",2,(void*)gauss,8,"GG"}, -{"matsolvemod",3,(void*)matsolvemod0,8,"GGGD0,L,"}, +{"matsolvemod",99,(void*)matsolvemod0,8,"GGGD0,L,"}, {"matsupplement",1,(void*)suppl,8,"Gp"}, -{"mattranspose",1,(void*)gtrans,8,"G"}, +{"mattranspose",18,(void*)gtrans,8,"G"}, {"max",2,(void*)gmax,1,"GG"}, {"min",2,(void*)gmin,1,"GG"}, -{"modreverse",1,(void*)polymodrecip,6,"G"}, -{"moebius",1,(void*)gmu,4,"G"}, +{"modreverse",18,(void*)polymodrecip,6,"G"}, +{"moebius",18,(void*)gmu,4,"G"}, {"newtonpoly",2,(void*)newtonpoly,6,"GG"}, {"next",0,(void*)next0,11,"v"}, -{"nextprime",1,(void*)gnextprime,4,"G"}, +{"nextprime",18,(void*)gnextprime,4,"G"}, {"nfalgtobasis",2,(void*)algtobasis,6,"GG"}, @@ -1455,3 +1458,3 @@ entree functions_basic[]={ {"nfdetint",2,(void*)nfdetint,6,"GG"}, -{"nfdisc",1,(void*)nfdiscf0,6,"GD0,L,D0,G,"}, +{"nfdisc",99,(void*)nfdiscf0,6,"GD0,L,D0,G,"}, {"nfeltdiv",3,(void*)element_div,6,"GGG"}, @@ -1468,13 +1471,13 @@ entree functions_basic[]={ {"nfeltval",30,(void*)element_val,6,"GGGl"}, -{"nffactor",30,(void*)nffactor,6,"GG"}, -{"nffactormod",30,(void*)nffactormod,6,"GGG"}, +{"nffactor",99,(void*)nffactor,6,"GG"}, +{"nffactormod",99,(void*)nffactormod,6,"GGG"}, {"nfgaloisapply",3,(void*)galoisapply,6,"GGG"}, -{"nfgaloisconj",1,(void*)galoisconj0,6,"GD0,L,p"}, -{"nfhilbert",10,(void*)nfhilbert0,6,"lGGGDG"}, +{"nfgaloisconj",99,(void*)galoisconj0,6,"GD0,L,p"}, +{"nfhilbert",99,(void*)nfhilbert0,6,"lGGGDG"}, {"nfhnf",2,(void*)nfhermite,6,"GG"}, {"nfhnfmod",3,(void*)nfhermitemod,6,"GGG"}, -{"nfinit",1,(void*)nfinit0,6,"GD0,L,p"}, +{"nfinit",99,(void*)nfinit0,6,"GD0,L,p"}, {"nfisideal",20,(void*)isideal,6,"GGl"}, -{"nfisincl",2,(void*)nfisincl0,6,"GGD0,L,"}, -{"nfisisom",2,(void*)nfisisom0,6,"GGD0,L,"}, +{"nfisincl",25,(void*)nfisincl0,6,"GGD0,L,"}, +{"nfisisom",25,(void*)nfisisom0,6,"GGD0,L,"}, {"nfkermodpr",3,(void*)nfkermodpr,6,"GGG"}, @@ -1482,3 +1485,3 @@ entree functions_basic[]={ {"nfnewprec",1,(void*)nfnewprec,6,"Gp"}, -{"nfroots",30,(void*)nfroots,6,"GG"}, +{"nfroots",99,(void*)nfroots,6,"GG"}, {"nfrootsof1",1,(void*)rootsof1,6,"Gp"}, @@ -1486,51 +1489,51 @@ entree functions_basic[]={ {"nfsolvemodpr",4,(void*)nfsolvemodpr,6,"GGGG"}, -{"nfsubfields",2,(void*)subfields0,6,"GD0,G,"}, -{"norm",1,(void*)gnorm,2,"G"}, -{"norml2",1,(void*)gnorml2,2,"G"}, -{"numdiv",1,(void*)gnumbdiv,4,"G"}, -{"numerator",1,(void*)numer,2,"G"}, +{"nfsubfields",99,(void*)subfields0,6,"GD0,G,"}, +{"norm",18,(void*)gnorm,2,"G"}, +{"norml2",18,(void*)gnorml2,2,"G"}, +{"numdiv",18,(void*)gnumbdiv,4,"G"}, +{"numerator",18,(void*)numer,2,"G"}, {"numtoperm",24,(void*)permute,2,"LG"}, -{"omega",1,(void*)gomega,4,"G"}, +{"omega",18,(void*)gomega,4,"G"}, {"padicappr",2,(void*)apprgen9,7,"GG"}, {"padicprec",20,(void*)padicprec,2,"GGl"}, -{"permtonum",1,(void*)permuteInv,2,"G"}, -{"polcoeff",21,(void*)polcoeff0,2,"GLDn"}, -{"polcompositum",2,(void*)polcompositum0,6,"GGD0,L,"}, -{"polcyclo",11,(void*)cyclo,7,"LDn"}, -{"poldegree",10,(void*)poldegree,7,"GDnl"}, -{"poldisc",1,(void*)discsr,7,"G"}, -{"poldiscreduced",1,(void*)reduceddiscsmith,7,"G"}, -{"polgalois",1,(void*)galois,6,"Gp"}, +{"permtonum",18,(void*)permuteInv,2,"G"}, +{"polcoeff",99,(void*)polcoeff0,2,"GLDn"}, +{"polcompositum",25,(void*)polcompositum0,6,"GGD0,L,"}, +{"polcyclo",99,(void*)cyclo,7,"LDn"}, +{"poldegree",99,(void*)poldegree,7,"GDnl"}, +{"poldisc",18,(void*)discsr,7,"G"}, +{"poldiscreduced",18,(void*)reduceddiscsmith,7,"G"}, +{"polgalois",99,(void*)galois,6,"Gp"}, {"polinterpolate",31,(void*)polint,7,"GGDGD&"}, -{"polisirreducible",1,(void*)gisirreducible,7,"G"}, +{"polisirreducible",18,(void*)gisirreducible,7,"G"}, {"polkaramul",32,(void*)karamul,7,"GGL"}, -{"pollead",1,(void*)pollead,7,"GDn"}, -{"pollegendre",11,(void*)legendre,7,"LDn"}, -{"polrecip",1,(void*)polrecip,7,"G"}, -{"polred",1,(void*)polred0,6,"GD0,L,D0,G,p"}, -{"polredabs",1,(void*)polredabs0,6,"GD0,L,p"}, +{"pollead",99,(void*)pollead,7,"GDn"}, +{"pollegendre",99,(void*)legendre,7,"LDn"}, +{"polrecip",18,(void*)polrecip,7,"G"}, +{"polred",99,(void*)polred0,6,"GD0,L,D0,G,p"}, +{"polredabs",99,(void*)polredabs0,6,"GD0,L,p"}, {"polredord",1,(void*)ordred,6,"Gp"}, -{"polresultant",2,(void*)polresultant0,7,"GGDnD0,L,"}, -{"polroots",1,(void*)roots0,7,"GD0,L,p"}, -{"polrootsmod",2,(void*)rootmod0,7,"GGD0,L,"}, +{"polresultant",99,(void*)polresultant0,7,"GGDnD0,L,"}, +{"polroots",99,(void*)roots0,7,"GD0,L,p"}, +{"polrootsmod",25,(void*)rootmod0,7,"GGD0,L,"}, {"polrootspadic",32,(void*)rootpadic,7,"GGL"}, -{"polsturm",10,(void*)sturmpart,7,"GDGDGl"}, -{"polsubcyclo",2,(void*)subcyclo,6,"GGDn"}, -{"polsylvestermatrix",2,(void*)sylvestermatrix,7,"GGp"}, +{"polsturm",99,(void*)sturmpart,7,"GDGDGl"}, +{"polsubcyclo",99,(void*)subcyclo,6,"GGDn"}, +{"polsylvestermatrix",29,(void*)sylvestermatrix,7,"GGp"}, {"polsym",21,(void*)polsym,7,"GL"}, -{"poltchebi",11,(void*)tchebi,7,"LDn"}, -{"poltschirnhaus",1,(void*)tschirnhaus,6,"G"}, -{"polylog",24,(void*)polylog0,3,"LGD0,L,p"}, -{"polzagier",21,(void*)polzag,7,"LL"}, -{"precision",1,(void*)precision0,2,"GD0,L,"}, -{"precprime",1,(void*)gprecprime,4,"G"}, +{"poltchebi",99,(void*)tchebi,7,"LDn"}, +{"poltschirnhaus",18,(void*)tschirnhaus,6,"G"}, +{"polylog",99,(void*)polylog0,3,"LGD0,L,p"}, +{"polzagier",99,(void*)polzag,7,"LL"}, +{"precision",99,(void*)precision0,2,"GD0,L,"}, +{"precprime",18,(void*)gprecprime,4,"G"}, {"prime",11,(void*)prime,4,"L"}, {"primes",11,(void*)primes,4,"L"}, -{"prod",48,(void*)produit,9,"V=GGID1,G,"}, +{"prod",47,(void*)produit,9,"V=GGID1,G,"}, {"prodeuler",37,(void*)prodeuler,9,"V=GGIp"}, -{"prodinf",27,(void*)prodinf0,9,"V=GID0,L,p"}, +{"prodinf",99,(void*)prodinf0,9,"V=GID0,L,p"}, {"psi",1,(void*)gpsi,3,"Gp"}, -{"qfbclassno",1,(void*)qfbclassno0,4,"GD0,L,"}, +{"qfbclassno",99,(void*)qfbclassno0,4,"GD0,L,"}, {"qfbcompraw",2,(void*)compraw,4,"GG"}, -{"qfbhclassno",1,(void*)hclassno,4,"G"}, +{"qfbhclassno",18,(void*)hclassno,4,"G"}, {"qfbnucomp",3,(void*)nucomp,4,"GGG"}, @@ -1538,16 +1541,16 @@ entree functions_basic[]={ {"qfbpowraw",23,(void*)powraw,4,"GL"}, -{"qfbprimeform",2,(void*)primeform,4,"GGp"}, -{"qfbred",1,(void*)qfbred0,4,"GD0,L,DGDGDG"}, -{"qfgaussred",1,(void*)sqred,8,"G"}, +{"qfbprimeform",29,(void*)primeform,4,"GGp"}, +{"qfbred",99,(void*)qfbred0,4,"GD0,L,DGDGDG"}, +{"qfgaussred",18,(void*)sqred,8,"G"}, {"qfjacobi",1,(void*)jacobi,8,"Gp"}, -{"qflll",1,(void*)qflll0,8,"GD0,L,p"}, -{"qflllgram",1,(void*)qflllgram0,8,"GD0,L,p"}, +{"qflll",99,(void*)qflll0,8,"GD0,L,p"}, +{"qflllgram",99,(void*)qflllgram0,8,"GD0,L,p"}, {"qfminim",33,(void*)minim0,8,"GGGD0,L,p"}, -{"qfperfection",10,(void*)perf,8,"G"}, -{"qfsign",1,(void*)signat,8,"G"}, +{"qfperfection",18,(void*)perf,8,"G"}, +{"qfsign",18,(void*)signat,8,"G"}, {"quadclassunit",96,(void*)quadclassunit0,4,"GD0,L,DGp"}, -{"quaddisc",1,(void*)quaddisc,4,"G"}, -{"quadgen",1,(void*)quadgen,4,"G"}, -{"quadhilbert",11,(void*)quadhilbert,4,"GD0,G,p"}, -{"quadpoly",1,(void*)quadpoly,4,"G"}, +{"quaddisc",18,(void*)quaddisc,4,"G"}, +{"quadgen",18,(void*)quadgen,4,"G"}, +{"quadhilbert",99,(void*)quadhilbert,4,"GD0,G,p"}, +{"quadpoly",18,(void*)quadpoly,4,"G"}, {"quadregulator",1,(void*)gregula,4,"Gp"}, @@ -1555,3 +1558,3 @@ entree functions_basic[]={ {"random",0,(void*)genrand,2,"DG"}, -{"real",1,(void*)greal,2,"G"}, +{"real",18,(void*)greal,2,"G"}, {"removeprimes",0,(void*)removeprimes,4,"D[],G,"}, @@ -1562,6 +1565,6 @@ entree functions_basic[]={ {"rnfbasistoalg",2,(void*)rnfbasistoalg,6,"GG"}, -{"rnfcharpoly",14,(void*)rnfcharpoly,6,"GGGDn"}, -{"rnfconductor",2,(void*)rnfconductor,6,"GGp"}, -{"rnfdedekind",30,(void*)rnfdedekind,6,"GGG"}, -{"rnfdet",2,(void*)rnfdet0,6,"GGD0,G,"}, +{"rnfcharpoly",99,(void*)rnfcharpoly,6,"GGGDn"}, +{"rnfconductor",29,(void*)rnfconductor,6,"GGp"}, +{"rnfdedekind",99,(void*)rnfdedekind,6,"GGG"}, +{"rnfdet",99,(void*)rnfdet0,6,"GGD0,G,"}, {"rnfdisc",2,(void*)rnfdiscf,6,"GG"}, @@ -1571,3 +1574,3 @@ entree functions_basic[]={ {"rnfeltup",2,(void*)rnfelementup,6,"GG"}, -{"rnfequation",2,(void*)rnfequation0,6,"GGD0,L,"}, +{"rnfequation",25,(void*)rnfequation0,6,"GGD0,L,"}, {"rnfhnfbasis",2,(void*)rnfhermitebasis,6,"GG"}, @@ -1582,17 +1585,17 @@ entree functions_basic[]={ {"rnfidealup",2,(void*)rnfidealup,6,"GG"}, -{"rnfinit",2,(void*)rnfinitalg,6,"GGp"}, +{"rnfinit",29,(void*)rnfinitalg,6,"GGp"}, {"rnfisfree",20,(void*)rnfisfree,6,"GGl"}, -{"rnfisnorm",3,(void*)rnfisnorm,6,"GGGD1,L,p"}, -{"rnfkummer",2,(void*)rnfkummer,6,"GGD0,L,p"}, -{"rnflllgram",3,(void*)rnflllgram,6,"GGGp"}, +{"rnfisnorm",99,(void*)rnfisnorm,6,"GGGD1,L,p"}, +{"rnfkummer",99,(void*)rnfkummer,6,"GGD0,L,p"}, +{"rnflllgram",99,(void*)rnflllgram,6,"GGGp"}, {"rnfnormgroup",2,(void*)rnfnormgroup,6,"GG"}, -{"rnfpolred",2,(void*)rnfpolred,6,"GGp"}, -{"rnfpolredabs",2,(void*)rnfpolredabs,6,"GGD0,L,p"}, +{"rnfpolred",29,(void*)rnfpolred,6,"GGp"}, +{"rnfpolredabs",99,(void*)rnfpolredabs,6,"GGD0,L,p"}, {"rnfpseudobasis",2,(void*)rnfpseudobasis,6,"GG"}, {"rnfsteinitz",2,(void*)rnfsteinitz,6,"GG"}, -{"round",1,(void*)round0,2,"GD0,L,"}, +{"round",99,(void*)round0,2,"GD0,L,"}, {"rounderror",10,(void*)rounderror,2,"Gl"}, {"serconvol",2,(void*)convol,7,"GG"}, -{"serlaplace",1,(void*)laplace,7,"G"}, -{"serreverse",1,(void*)recip,7,"G"}, +{"serlaplace",18,(void*)laplace,7,"G"}, +{"serreverse",18,(void*)recip,7,"G"}, {"setintersect",2,(void*)setintersect,8,"GG"}, @@ -1600,10 +1603,10 @@ entree functions_basic[]={ {"setminus",2,(void*)setminus,8,"GG"}, -{"setrand",11,(void*)setrand,11,"Lp"}, -{"setsearch",20,(void*)setsearch,8,"lGGD0,L,"}, +{"setrand",99,(void*)setrand,11,"Lp"}, +{"setsearch",99,(void*)setsearch,8,"lGGD0,L,"}, {"setunion",2,(void*)setunion,8,"GG"}, -{"shift",21,(void*)gshift,1,"GL"}, -{"shiftmul",21,(void*)gmul2n,1,"GL"}, -{"sigma",1,(void*)gsumdivk,4,"GD1,L,"}, +{"shift",99,(void*)gshift,1,"GL"}, +{"shiftmul",99,(void*)gmul2n,1,"GL"}, +{"sigma",99,(void*)gsumdivk,4,"GD1,L,"}, {"sign",10,(void*)gsigne,1,"Gl"}, -{"simplify",1,(void*)simplify,2,"G"}, +{"simplify",18,(void*)simplify,2,"G"}, {"sin",1,(void*)gsin,3,"Gp"}, @@ -1613,12 +1616,12 @@ entree functions_basic[]={ {"solve",37,(void*)zbrent,9,"V=GGIp"}, -{"sqr",1,(void*)gsqr,3,"G"}, +{"sqr",18,(void*)gsqr,3,"G"}, {"sqrt",1,(void*)gsqrt,3,"Gp"}, {"sqrtint",1,(void*)racine,4,"Gp"}, -{"subgrouplist",10,(void*)subgrouplist0,6,"GD0,L,D0,L,p"}, +{"subgrouplist",99,(void*)subgrouplist0,6,"GD0,L,D0,L,p"}, {"subst",26,(void*)gsubst,7,"GnG"}, {"sum",48,(void*)somme,9,"V=GGID0,G,p"}, -{"sumalt",27,(void*)sumalt0,9,"V=GID0,L,p"}, +{"sumalt",99,(void*)sumalt0,9,"V=GID0,L,p"}, {"sumdiv",22,(void*)divsum,9,"GVI"}, {"suminf",27,(void*)suminf,9,"V=GIp"}, -{"sumpos",27,(void*)sumpos0,9,"V=GID0,L,p"}, +{"sumpos",99,(void*)sumpos0,9,"V=GID0,L,p"}, {"tan",1,(void*)gtan,3,"Gp"}, @@ -1627,25 +1630,25 @@ entree functions_basic[]={ {"teichmuller",1,(void*)teich,3,"Gp"}, -{"theta",2,(void*)theta,3,"GGp"}, -{"thetanullk",21,(void*)thetanullk,3,"GL"}, -{"thue",2,(void*)thue,7,"GGDG"}, -{"thueinit",2,(void*)thueinit,7,"GD0,L,p"}, +{"theta",29,(void*)theta,3,"GGp"}, +{"thetanullk",99,(void*)thetanullk,3,"GL"}, +{"thue",99,(void*)thue,7,"GGDG"}, +{"thueinit",99,(void*)thueinit,7,"GD0,L,p"}, {"trace",1,(void*)gtrace,8,"Gp"}, -{"truncate",1,(void*)trunc0,2,"GD0,L,"}, +{"truncate",99,(void*)trunc0,2,"GD0,L,"}, {"until",82,NULL,11,NULL}, {"valuation",20,(void*)ggval,2,"GGl"}, -{"variable",1,(void*)gpolvar,2,"G"}, -{"veceint1",2,(void*)veceint1,3,"GGp"}, -{"vecextract",2,(void*)extract0,8,"GGDG"}, +{"variable",18,(void*)gpolvar,2,"G"}, +{"veceint1",29,(void*)veceint1,3,"GGp"}, +{"vecextract",99,(void*)extract0,8,"GGDG"}, {"vecmax",1,(void*)vecmax,1,"Gp"}, {"vecmin",1,(void*)vecmin,1,"Gp"}, -{"vecsort",2,(void*)vecsort0,8,"GDGD0,L,"}, +{"vecsort",99,(void*)vecsort0,8,"GDGD0,L,"}, {"vector",22,(void*)vecteur,8,"GVI"}, {"vectorv",22,(void*)vvecteur,8,"GVI"}, -{"weber",1,(void*)weber0,3,"GD0,L,p"}, +{"weber",99,(void*)weber0,3,"GD0,L,p"}, {"while",81,NULL,11,NULL}, {"zeta",1,(void*)gzeta,3,"Gp"}, -{"zetak",2,(void*)gzetakall,6,"GGD0,L,p"}, +{"zetak",99,(void*)gzetakall,6,"GGD0,L,p"}, {"zetakinit",1,(void*)initzeta,6,"Gp"}, -{"znorder",1,(void*)order,4,"G"}, -{"znprimroot",1,(void*)ggener,4,"G"}, +{"znorder",18,(void*)order,4,"G"}, +{"znprimroot",18,(void*)ggener,4,"G"}, {"znstar",1,(void*)znstar,4,"Gp"},