Bill Allombert on Tue, 19 Dec 2023 10:50:30 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: Finding bitprecision
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 19 Dec 2023 10:50:26 +0100
- Delivery-date: Tue, 19 Dec 2023 10:50:30 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1702979428; bh=jEyY2AwilW/IIYa/8NS/88KhodT0OULU57yxkk4KPOA=; h=Date:From:To:Subject:References:In-Reply-To:From; b=r3TNU5dv01ly9MOaradt1rnsvY+zhWtE6vp/I0wRWjNRjp82nHQRqA+D4OcFFHk5f ywh6mEaawXizLS7vFztbvbXcaz01iB0F00h3opP6hlpZPdweYLMvJKWd1SuxPx8q6P WcEmp8IxXO+Q/SWNQSHxYdGAi+DBwYzt0nEl8YzWG1Sf6UBkHbAT4JGxeV+QDyfOSB LExLfSQKdDKNHwFNBKFZZLUTfCCYgUb6DZmSNlb9OiDv17sjbaOF424XLCPilBfPBh 593vI6M04ObRIlIAVecKFZErki6MJqrGUj58GCByTygw9COE83C7D5qYPETpI30H7x mZheFx3UqfIz74r1QbjcMB94WbyoP70/517trlPfKgIV0ZOt6yUcK9qGr0GFf7g0LQ yz8PRsRjyd/t8K0F3CdGE84gkykejPEZMa8+5iC9p+C1n1fw/x9rAcJej8NjNiTgLN ltoAbpDybmTT/o+dCYaVKzBkJujagbl0LPxdXq93gbiJOLDGkte/N4iH2QXDeaD8fp W34ThwhQrDKaAr12+kBl4UaXRLSLA6i1PJF8xRrpxNtr3Zb5klRLNJSlyXnFco9HUW 9y3JoG5Rt1EcRdr3DirY7smfTVtlT4Q9DXhihpteOIvnFfzDuldeOWOZreeP+VVBEG wDSLu6op86nRG0mGQIhF0b/M=
- In-reply-to: <ZYE2Rsr+QQaOhT/d@login.math.berkeley.edu>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <ZYE2Rsr+QQaOhT/d@login.math.berkeley.edu>
On Mon, Dec 18, 2023 at 10:20:54PM -0800, Ilya Zakharevich wrote:
> Should not there be O(1) way to find the current localbitprecision()?
>
> (22:17) gp > localprec(10000); my(s); for(n=1,100000, s+=bitprecision(1.));
> time = 78 ms.
> (22:17) gp > localprec(1000000); my(s); for(n=1,100000, s+=bitprecision(1.));
> time = 2,121 ms.
Yes, it is called getlocalbitprec().
Cheers,
Bill