Karim Belabas on Wed, 04 Dec 2019 23:17:58 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Hypotheses on P(x) in zncoppersmith? |
* Georgi Guninski [2019-12-04 09:15]: > On Wed, Dec 4, 2019 at 3:26 AM Karim Belabas > <Karim.Belabas@math.u-bordeaux.fr> wrote: > > > When gcd(lc(P), N) > 1, there is no easy formula. The best I can come > > up with is the following > > > > d := deg P > > b := log_N B > > x := log_N X > > p := log_N gcd(lc(P), N) > > > > Your constraints are so restrictive I am not sure > they are ever satisfiable. > Do you have explicit N,P with gcd(N,lc(P))>1 where > zncoppersmith finds root? Sure. Here's a "random" example in the "small p" category [ 2) in my original message ] q = nextprime(10^20); N = q * nextprime(10^10) * nextprime(10^30) * nextprime(10^50); P = q * t + 100000000189172653204751006593737760787542892542935566160916650706339174019956544019987983467739604695370082353 p = log(q) / log(N); b = 1/2; x = 0.1; ? zncoppersmith(P, N, N^x, sqrtint(N)) %1 = [-11987937] ? gcd(subst(P,t,%1[1]), N) %2 = 10000000000000000003900000000000000000000000000015100000000000000005889 ? x * (1 + p*(1-2)) - (b - p)^2 \\ negative %3 = -0.019421487604037331500073537357409660596 I'm not claiming that the feature is very useful, just that this is supported with no extra cost in the implementation. (And that the documentation is now correct.) Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `