Peter Bruin on Mon, 13 Feb 2017 09:20:14 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: new functions FFM_deplin, FFM_indexrank, FFM_suppl etc. |
Bill Allombert <Bill.Allombert@math.u-bordeaux.fr> wrote: > Would you mind writing the documentation of the new libpari functions ? Of course, here it is. I added documentation for a few other functions as well, sorted the surrounding documentation entries and made some minor edits. Peter
>From cea05a88603d45d4afe604899b8336a24afbff3b Mon Sep 17 00:00:00 2001 From: Peter Bruin <P.J.Bruin@math.leidenuniv.nl> Date: Mon, 13 Feb 2017 08:46:02 +0100 Subject: [PATCH] add documentation for linear algebra functions --- doc/usersch5.tex | 78 +++++++++++++++++++++++++++++++++++++++--------------- 1 file changed, 56 insertions(+), 22 deletions(-) diff --git a/doc/usersch5.tex b/doc/usersch5.tex index e552dc0..166b4b9 100644 --- a/doc/usersch5.tex +++ b/doc/usersch5.tex @@ -3913,12 +3913,6 @@ reduced (i.e arbitrary \typ{INT}s and \kbd{ZX}s in the same variable as \fun{GEN}{FqC_Fq_mul}{GEN a, GEN b, GEN T, GEN p} -\fun{GEN}{FqM_deplin}{GEN x, GEN T, GEN p} returns a non-trivial kernel vector, -or \kbd{NULL} if none exist. - -\fun{GEN}{FqM_gauss}{GEN a, GEN b, GEN T, GEN p} -as \kbd{gauss}, where $b$ is a \kbd{FqM}. - \fun{GEN}{FqM_FqC_gauss}{GEN a, GEN b, GEN T, GEN p} as \kbd{gauss}, where $b$ is a \kbd{FqC}. @@ -3926,14 +3920,24 @@ as \kbd{gauss}, where $b$ is a \kbd{FqC}. \fun{GEN}{FqM_FqC_mul}{GEN a, GEN b, GEN T, GEN p} -\fun{GEN}{FqM_ker}{GEN x, GEN T, GEN p} as \kbd{ker} +\fun{GEN}{FqM_deplin}{GEN x, GEN T, GEN p} returns a non-trivial +kernel vector, or \kbd{NULL} if none exist. + +\fun{GEN}{FqM_det}{GEN x, GEN T, GEN p} as \kbd{det} + +\fun{GEN}{FqM_gauss}{GEN a, GEN b, GEN T, GEN p} +as \kbd{gauss}, where $b$ is a \kbd{FqM}. \fun{GEN}{FqM_image}{GEN x, GEN T, GEN p} as \kbd{image} +\fun{GEN}{FqM_indexrank}{GEN x, GEN T, GEN p} as \kbd{indexrank} + \fun{GEN}{FqM_inv}{GEN x, GEN T, GEN p} returns the inverse of \kbd{x}, or \kbd{NULL} if \kbd{x} is not invertible. -\fun{GEN}{FqM_invimage}{GEN a, GEN b, GEN T, GEN p} +\fun{GEN}{FqM_invimage}{GEN a, GEN b, GEN T, GEN p} as \kbd{invimage} + +\fun{GEN}{FqM_ker}{GEN x, GEN T, GEN p} as \kbd{ker} \fun{GEN}{FqM_mul}{GEN a, GEN b, GEN T, GEN p} @@ -3941,8 +3945,6 @@ as \kbd{gauss}, where $b$ is a \kbd{FqC}. \fun{GEN}{FqM_suppl}{GEN x, GEN T, GEN p} as \kbd{suppl} -\fun{GEN}{FqM_det}{GEN x, GEN T, GEN p} as \kbd{det} - \subsec{\kbd{Flc} / \kbd{Flv}, \kbd{Flm}} See \kbd{FpV}, \kbd{FpM} operations. @@ -4250,28 +4252,34 @@ and \kbd{y} \fun{GEN}{FlxM_Flx_add_shallow}{GEN x, GEN y, ulong p} as \kbd{RgM\_Rg\_add\_shallow}. -\fun{GEN}{FlxqM_gauss}{GEN a, GEN b, GEN T, ulong p} - \fun{GEN}{FlxqM_FlxqC_gauss}{GEN a, GEN b, GEN T, ulong p} \fun{GEN}{FlxqM_FlxqC_invimage}{GEN a, GEN b, GEN T, ulong p} \fun{GEN}{FlxqM_FlxqC_mul}{GEN a, GEN b, GEN T, ulong p} -\fun{GEN}{FlxqM_ker}{GEN x, GEN T, ulong p} +\fun{GEN}{FlxqM_deplin}{GEN x, GEN T, ulong p} + +\fun{GEN}{FlxqM_det}{GEN x, GEN T, ulong p} + +\fun{GEN}{FlxqM_gauss}{GEN a, GEN b, GEN T, ulong p} \fun{GEN}{FlxqM_image}{GEN x, GEN T, ulong p} -\fun{GEN}{FlxqM_det}{GEN a, GEN T, ulong p} +\fun{GEN}{FlxqM_indexrank}{GEN x, GEN T, ulong p} \fun{GEN}{FlxqM_inv}{GEN x, GEN T, ulong p} \fun{GEN}{FlxqM_invimage}{GEN a, GEN b, GEN T, ulong p} +\fun{GEN}{FlxqM_ker}{GEN x, GEN T, ulong p} + \fun{GEN}{FlxqM_mul}{GEN a, GEN b, GEN T, ulong p} \fun{long}{FlxqM_rank}{GEN x, GEN T, ulong p} +\fun{GEN}{FlxqM_suppl}{GEN x, GEN T, ulong p} + \fun{GEN}{matid_FlxqM}{long n, GEN T, ulong p} \subsec{\kbd{FpX}} Let \kbd{p} an understood \typ{INT}, to be given in @@ -5940,7 +5948,7 @@ $a=\sigma(X)$ where $\sigma$ is an automorphism of the algebra $\F_2[X]/T(X)$. \fun{GEN}{F2xqM_F2xqC_mul}{GEN a, GEN b, GEN T} -\fun{GEN}{F2xqM_ker}{GEN x, GEN T} +\fun{GEN}{F2xqM_deplin}{GEN x, GEN T} \fun{GEN}{F2xqM_det}{GEN a, GEN T} @@ -5948,14 +5956,20 @@ $a=\sigma(X)$ where $\sigma$ is an automorphism of the algebra $\F_2[X]/T(X)$. \fun{GEN}{F2xqM_image}{GEN x, GEN T} +\fun{GEN}{F2xqM_indexrank}{GEN x, GEN T} + \fun{GEN}{F2xqM_inv}{GEN a, GEN T} \fun{GEN}{F2xqM_invimage}{GEN a, GEN b, GEN T} +\fun{GEN}{F2xqM_ker}{GEN x, GEN T} + \fun{GEN}{F2xqM_mul}{GEN a, GEN b, GEN T} \fun{long}{F2xqM_rank}{GEN x, GEN T} +\fun{GEN}{F2xqM_suppl}{GEN x, GEN T} + \fun{GEN}{matid_F2xqM}{long n, GEN T} \subsec{\kbd{F2xX}}. See \kbd{FpXX} operations. @@ -11299,31 +11313,51 @@ finite field given by \kbd{ff} (\typ{FFELT}), return a column vector the matrix~\kbd{M} (\typ{MAT}) and the column vector~\kbd{C} (\typ{COL}) over the finite field given by \kbd{ff} (\typ{FFELT}). -\fun{GEN}{FFM_ker}{GEN M, GEN ff} returns the kernel of the \typ{MAT} \kbd{M} -defined over the finite field given by the \typ{FFELT} \kbd{ff} (obtained -by \tet{RgM_is_FFM(M,\&ff)}). +\fun{GEN}{FFM_deplin}{GEN M, GEN ff} returns a non-zero vector +(\typ{COL}) in the kernel of the matrix~\kbd{M} over the finite field +given by \kbd{ff}, or \kbd{NULL} if no such vector exists. -\fun{GEN}{FFM_det}{GEN M, GEN ff} +\fun{GEN}{FFM_det}{GEN M, GEN ff} returns the determinant of the +matrix~\kbd{M} over the finite field given by \kbd{ff}. \fun{GEN}{FFM_gauss}{GEN M, GEN N, GEN ff} given two matrices \kbd{M} and~\kbd{N} (\typ{MAT}) over the finite field given by \kbd{ff} (\typ{FFELT}) such that $M$ is invertible, return the unique matrix $X$ such that $MX=N$. -\fun{GEN}{FFM_image}{GEN M, GEN ff} +\fun{GEN}{FFM_image}{GEN M, GEN ff} returns a matrix whose columns +span the image of the matrix~\kbd{M} over the finite field given by +\kbd{ff}. + +\fun{GEN}{FFM_indexrank}{GEN M, GEN ff} given a matrix \kbd{M} of +rank~$r$ over the finite field given by \kbd{ff}, returns a vector +with two \typ{VECSMALL} components $y$ and $z$ containing $r$ row and +column indices, respectively, such that the $r\times r$-matrix formed +by the \kbd{M[i,j]} for $i$ in $y$ and $j$ in $z$ is invertible. -\fun{GEN}{FFM_inv}{GEN M, GEN ff} +\fun{GEN}{FFM_inv}{GEN M, GEN ff} returns the inverse of the square +matrix~\kbd{M} over the finite field given by \kbd{ff}, or \kbd{NULL} +if \kbd{M} is not invertible. \fun{GEN}{FFM_invimage}{GEN M, GEN N, GEN ff} given two matrices \kbd{M} and~\kbd{N} (\typ{MAT}) over the finite field given by \kbd{ff} (\typ{FFELT}), return a matrix \kbd{X} such that $MX=N$, or \kbd{NULL} if no such matrix exists. +\fun{GEN}{FFM_ker}{GEN M, GEN ff} returns the kernel of the \typ{MAT} +\kbd{M} over the finite field given by the \typ{FFELT} \kbd{ff}. + \fun{GEN}{FFM_mul}{GEN M, GEN N, GEN ff} returns the product of the matrices \kbd{M} and~\kbd{N} (\typ{MAT}) over the finite field given by \kbd{ff} (\typ{FFELT}). -\fun{long}{FFM_rank}{GEN M, GEN ff} +\fun{long}{FFM_rank}{GEN M, GEN ff} returns the rank of the +matrix~\kbd{M} over the finite field given by \kbd{ff}. + +\fun{GEN}{FFM_suppl}{GEN M, GEN ff} given a matrix \kbd{M} over the +finite field given by \kbd{ff} whose columns are linearly independent, +returns a square invertible matrix whose first columns are those +of~\kbd{M}. \section{Transcendental functions} -- 1.7.9.5