John Cremona on Wed, 03 Aug 2016 16:51:14 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Please test pari-2.8.0 prerelease 1 |
Built OK from tarball, and make test-all ran fine (with all optional data installed) on Olinux-x86_64 This is an amazing release! John On 1 August 2016 at 23:11, Bill Allombert <Bill.Allombert@math.u-bordeaux.fr> wrote: > Dear PARI developers, > > We have made available a prerelease of PARI 2.8.0 (alpha). > > Please test the prerelease tarball: > <http://pari.math.u-bordeaux.fr/pub/pari/snapshots/pari-2.8.0-pre1.alpha.tar.gz> > > The expected release date is set to the 12/08/2016. > > Please also test the standalone 64bit Mac OS X binary: > > <http://pari.math.u-bordeaux.fr/pub/pari/mac/snapshots/gp-2.8.0-pre1-osx> > > ane the the 64bit windows installer: > <http://pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/Pari64-2-8-0-pre1.exe> > > I have also built the 32bit Windows installer: > <http://pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/Pari32-2-8-0-pre1.exe> > > and the following standalone Windows binaries: > > 32bit > <http://pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/gp32-2-8-0-pre1.exe> > <http://pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/gp32-readline-2-8-0-pre1.exe> > > 64bit > <http://pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/gp64-2-8-0-pre1.exe> > <http://pari.math.u-bordeaux.fr/pub/pari/windows/snapshots/gp64-readline-2-8-0-pre1.exe> > > Below is the announcement that will be sent to pari-announce for the > final release. > > Please report any error in the announcement > > On behalf of the PARI group, > Bill and Karim > > - - - - - - - - - - - - - - - - - - - - > > Dear PARI lovers, > > I would like to announce the release of long-awaited pari-2.8.0-ALPHA, > incorporating two years worth of development into an official release! > > The sources and a Windows binary can be obtained through the address > > http://pari.math.u-bordeaux.fr/download.html > > This new branch contains three brand new packages (L-functions, Modular > Symbols and Central Simple Algebras) as well as a wealth of new functions for > elliptic curves, and many improvements throughout the system. > > See http://pari.math.u-bordeaux.fr/Bugs/ for how to report problems > or submit wishlist items. > > Have fun ! > > K.B. > > HIGHLIGHTS FOR PARI-2.8.0-ALPHA: see below for COMPATIBILITY ISSUES. > ================================ > > [Systems] > - Mingw64 support (Windows 64 bit) > > - Unify 32/64 bit random generators. Probabilistic algorithms should now > behave identically on all architecture, provided they do not involve > the floating point kernel > > [The GP language] > - Support for variadic GP functions (having any number of arguments), e.g. > ? f(v[..]) = sum(i = 1, #v, v[i]) > ? f(1, 2, 3, 4, 5) > %2 = 15 > > - New constant "oo" (for +/- infinity) > > - Simpler handling of polynomial variables: polynomial variables no longer > spring into existence whenever a new identifier occurs in the parser, > only if a polynomial is explicitly created; e.g. t = 0 no longer creates > the "polynomial variable" t thereby messing up variable ordering. > > Functions varhigher() and varlower() allow to define > variables of arbitrary priority independently of the session history; > variables() returns the list of variables occuring in an object: > ? variable(x + y*z / t) > %1 = x > ? variables(x + y*z / t) > %2 = [x, y, z, t] > > - Hashtables/dictionnaries in GP via functions Map, mapget, mapput, > mapisdefined, mapdelete > ? M = Mat(); \\ empty > ? mapput(M, "a", 23); \\ insert key/value: "a" maps to 23 > ? mapput(M, "b", 43); \\ "b" maps to 43 > ? mapget(M, "a") \\ retrieve value attached to key "a" > %3 = 23 > ? M = Map(["a", 23; "b", 43]); \\ fast initialization > > - New functions allow setting precision at the bit-level (instead of the > word-level = 64 bits); new default 'realbitprecision' and \pb shortcut, > and a function bitprecision() > > - Warn when coercing quotient rings when 'debug' non-zero > ? \g1 > ? Mod(1,2)+Mod(1,3) > *** _+_: Warning: coercing quotient rings; moduli 2 and 3 -> 1. > > - More versatile closures: function self() for recursive anonymous > functions, call() to apply a function of unspecified arity to arbitrary > arguments), fold() such that fold(f,v) = f(...(f(v[1], v[2]), ...,) v[#v]) > > - Miscellaneous new GP functions: serprec, powers, parforvec > > [Multiprecision Kernel] > - incgam, incgamc, eint1 more reliable > > - new functions sinc(x) = sin(x) / x and cotanh = 1/tanh > > - improved p-adic log at high accuracy > > - improved gamma, lngamma and psi at power series arguments > > [Numerical sumation and integration] > - rewrote numerical integration routines, which can of course > directly use the new oo symbol: > ? intnum(t = -oo, oo, 1/(1+t^2)) - Pi > %1 = 0.E-37 > - Gauss-Legendre quadrature: intnumgauss() > > - Rewrote numerical sumation (replace Abel-Plana by Euler-Mac Laurin). > This changed the sumnum() interface ! > > - Monien summation: sumnummonien() > > - Numerical extrapolation: limitnum(), asympnum() > > ? limitnum(n -> (1+1/n)^n) - exp(1) > %1 = 0.E-37 > > ? asympnum(n -> n! / (sqrt(2*Pi) * n^(n+1/2) * exp(-n))) > %2 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880, > 5246819/75246796800, -534703531/902961561600] > > - Continued fractions for numerical approximation via Pade approximants: > contfracinit() and contfraceval() > > - Inverse Mellin transforms of Gamma products: gammamellininv() > > - Multiple Zeta Values: zetamult() > > ? zetamult([2,1]) - zeta(3) \\ Euler's identity > %1 = 0.E-38 > > - zeta(odd integer): use Borwein's "sumalt" algorithm (10 times faster > than previous at \p1000) > > [Elementary Number Theory] > - Bounded factorization factor(n,lim) now always respects the 'lim' > argument (was ignored when n fit into a long integer) > > - sumdigits() now allows to specify the base; new function fromdigits() > > - Allow ffgen([p,f]) in addition to ffgen(p^f) and ffgen(T*Mod(1,p)) > > - New functions for generic characters: charker, charorder, charconj, > charmul, chardiv, chareval > > - New functions for Dirichlet characters: znconreychar, znconreyexp, > znconreylog, znconreyconductor, zncharinduce, zncharisodd. See ??Dirichlet > The functions idealstar / ideallog now allow omitting 'nf' argument for > nf = Q allowing to handle efficiently Dirichlet characters as Hecke > characters. > > - Miscellaneous new functions: qfbredsl2(), ispseudoprimepower(), > ramanujantau() > > [Polynomials] > - Real root finder: new function polrootsreal(T, [a,b]) > > - factorcantor now uses Shoup-Kaltofen algorithm (much faster) > > - padicfields(p, d) much faster for huge prime p > > [Linear Algebra] > - faster matrix multiplication over Z (Strassen) and finite fields (better > handling of modular kernel) > > - matsolve(a,b) and a^(-1) could give wrong results [or SEGV] when t_MAT > 'a' was non-square > > - faster implementation of matfrobenius/minpoly > > - matkerint: replace underlying LLL algorithm by mathnf > Simple bench: M=matrix(50,55,i,j,random(10^5)); \\ 200 times faster > > [Elliptic curves] > - Twists and Isogenies: elltwist, ellisogeny, ellisogenyapply, ellxn. > > - Modular polynomial: polmodular(); attached minimal polynomials defining > Hilbert class fields: polclass(). > > - Formal groups: ellformalw, ellformalpoint, ellformaldifferential, > ellformallog, ellformalexp > > - Elliptic curves over finite fields: ellissupersingular(), fast ellcard() > over fields of small, medium or large characteristic (SEA, Kedlaya, Satoh), > ellsea() for ellcard with early abort (almost prime cardinality) > elltatepairing() now reliable for self-pairings > > - Elliptic curves over Q: ellrootno(e, 2 or 3) for non-minimal e is now > properly supported, more robust and much faster ellL1() and > ellanalyticrank() (The condition ord(L_E,s=1) <= r in ellL1(E,r) is no > longer necessary; r is now optional, 0 by default); p-adic heights: > ellpadics2, ellpadicheight, ellpadicheightmatrix; p-adic L function: > ellpadicL (see also mspadicL); > > Q-isogenous curves and matrix of isogeny degrees: ellisomat; minimal > quadratic twist: ellminimaltwist; smallest multiple having good reduction > everywhere: ellnonsingularmultiple; new optional flag to forell to loop > over isogeny classes. > > - Elliptic curves over number fields: ellinit([a1,...,a5], nf); > support elltors, ellorder, elisdivisible, elllocalred, ellminimalmodel, > ellan, ellap(E,P), ellcard(E,P) for P a maximal ideal > > - Elliptic curves over p-adic fields: Q_2 is now properly supported, > ellpointtoz(E / Qp) has been fixed, added Mazur-Tate-Teitelbaum's L > invariant to E.tate; new function ellpadiclog. > > [Other Curves of small genus] > - Rational points on conics/Q : qfsolve, qfparam [ adapted from Denis Simon's > qfsolve.gp ] > > - General cubic to Weierstrass model: ellfromeqn() > > - genus2red: allow rational non integral models + change input so that either > genus2red(P) y^2 = P and genus2red([P,Q]) for y^2 + x*Q = P are > recognized; the output is now normalized + many bug fixes. > > - new functions ellpadicfrobenius, hyperellpadicfrobenius, hyperellcharpoly > > [Modular symbols & p-adic L functions] New package; see ??8 > - Modular symbols for Gamma_0(N): > msatkinlehner msfromell mshecke mspathlog > mscuspidal msfromhecke msinit msqexpansion > mseisenstein msgetlevel msissymbol mssplit > mseval msgetsign msnew msstar > msfromcusp msgetweight mspathgens > > - Attached overconvergent symbols, p-adic distributions and L-functions: > mstooms, msomseval, mspadicL, mspadicinit, mspadicmoments, mspadicseries > > [Complex L-functions] New package; see ??6 and ??Ldata > lfun lfundiv lfunmfspec > lfunabelianrelinit lfunetaquo lfunmul lfuntheta > lfunan lfunhardy lfunorderzero lfunthetainit > lfuncheckfeq lfuninit lfunqf lfunzeros > lfunconductor lfunlambda lfunrootres lfunartin > lfuncreate > > [Associative and central simple algebra] New package, see the tutorial ! > algabsdim algdisc algisramified algrandom > algadd algdivl algissemisimple algrelmultable > algalgtobasis algdivr algissimple algsimpledec > algaut alghasse algissplit algsplittingdata > algb alghassef algleftmultable algsplittingfield > algbasis alghassei algmul algsplittingmatrix > algbasistoalg algindex algmultable algsqr > algcenter alginit algneg algsub > algcentralproj alginv algnorm algsubalg > algchar alginvbasis algpoleval algtableinit > algcharpoly algisassociative algpow algtensor > algdecomposition algiscommutative algprimesubalg algtrace > algdegree algisdivision algquotient algtype > algdim algisdivl algradical > algisinv algramifiedplaces > > [Number Fields] > - New "compositum" functions. nfcompositum(): over number fields; > new binary flag to polcompositum() to assume fields are linearly disjoint; > nfsplitting: equation for splitting field / Q > > - Class groups and units: use GRH-guaranteed bounds in bnfinit for residue > estimate; made qfbclassno more reliable: correct for |D| < 2.10^10 and no > known counter example; of course you can double check with quadclassunit() > (rigorous under GRH but much slower up to |D| ~ 10^18 or so) > > - Class field theory: bnrisgalois, bnrgaloismatrix, bnrgaloisapply; > faster and more reliable rnfkummer; bnrconductor(bnr, chi) as a shortcut > for bnrconductor(bnr, Ker chi), same for bnrisconductor, bnrdisc and > bnrclassno; bnrchar to define classes of Hecke characters, e.g. trivial on > some congruence subgroup. > > - Relative number fields: rnf structures may now contain a full absolute nf > struct, attached to rnf.polabs; nfinit(rnf) returns it. This allows rnf > functions to return objects in standard notation (e.g. ideals in HNF > instead of as a vector of t_POLMOD generators); add optional flag to > that effect in rnfeltabstorel, rnfeltdown, rnfeltup, rnfidealreltoabs, > rnfinit. New functions rnfidealprimedec, rnfidealfactor. Add optional > flag to nfhnf and nfsnf to return transformation matrices. > > - idealprimedec now allows an optional 3rd argument, to limit f(P/p) > > - Extend idealchinese() to impose sign conditions at specified real places > > - Improvements in thue(), whose solutions are now canonically ordered > (lexsort); support (powers of) imaginary quadratic equations. > > > COMPATIBILITY ISSUES BETWEEN 2.7.* and 2.8.* > ============================================ > > - [libpari] comment out function names obsoleted during the 2.3.* cycle > (deprecated before 2007). See PARI_OLD_NAMES. > > - t_STR used to compare as larger than any real number via < or > > operators. Such a comparison now raises an exception. > > - valuation(0,p), nfeltval(nf,0,pr), idealval(nf,0) precision(0), > padicprec(0,p) now all return +oo > infinite slopes of newtonpoly replaced by +oo (instead of 2^63-1) > poldegree(0) now returns -oo > > - default 'compatible' and 'strictmatch' have been obsoleted. They are now > no-ops. > > - GP: polynomial variable 'y' is now always defined on startup, > with priority lower than 'x'; variables of arbitrary priority can now be > created: 'x' is no longer guaranteed to have maximal priority, > nor MAXVARN to have minimal priority. > > - the meaning of precision(x, n) no longer depends on the type of x: it now > always refers to floating point precision. Before the change: > precision([O(2),O(3),O(x)], 10) -> [O(2^10),O(3^10),O(x^10)] > > - no longer print 0 t_POLMOD as "0", e.g. output explicitly Mod(0,x) not '0'. > > - content([]) -> 0 [ was 1 ] > > - polsturm(T, a, b) is still supported but deprecated, use > polsturm(T, [a,b]) > > - nfdisc, nfbasis: no longer support the old (T,flag,fact) arguments. > Use the generic [T,listP] syntax > > - ellbil(E,P,Q) is now deprecated, use ellheight(E,P,Q) > > - rnfconductor now returns [cond, bnr, H] instead of [cond, bnr.clgp, H] > > - The sumnum interface has changed, see ??sumnum > > - The broken implementation of Dedekind zeta function zetakinit / zetak > has been removed, use the new Lfun package ! E.g. > \\ ~ zetakinit(x^3-2) on the critical line up to height 100 > ? L = lfuninit(x^3 - 2, [100]); > \\ ~ zetak > ? lfun(L, 1/2 + 10*I) \\ value at this point > > - polredabs(T) now internally uses the polredabs([T,listP]) strategy, > making it much faster in favourable cases, while still always returning > a canonical defining polynomial; polredabs([T,listP]) no longer returns 0 > if the attached order cannot be proven to be maximal: it computes the > expected canonical polynomial in all cases, which can be slow. Always use > polredbest() if you do not require a canonical output. > > ------------------------------------------------------------------------------- > > P.S. The Changelog > > Bug numbers refer to the BTS at http://pari.math.u-bordeaux.fr/Bugs/ > > Done for version 2.8.0 (released 01/08/2016): > > Fixed > 1- make install fails on OS/X: ln -s libpari.dylib libpari.dylib fails > 2- Q_pvalrem(t_FRAC) => wrong result > 3- [] == 0 but []~ != 0 (now []~ == 0 as well) [#1560] > BA 4- test-kernel did not work when using --mt=pthread > BA 5- ellheegner was using too much memory in some case > 6- ellap can overflow on 32-bit machine [#1558] > ellap(ellinit([582304190,64196421]),2147438927) -> overflow > ellap(ellinit([-1137195,489565862]),2038074751) -> wrong result > 7- nfhilbert(K,x,y, P above 2) could give wrong results [#1561] > 8- rnfkummer sometimes failed to return an answer: error or oo loop. > Relied on exhaustive enumeration of an Fp-vector space, some of > whose elements would trigger an error. Replace by Fp-linear algebra > that directly picks the correct line (O(d^3) algo instead of O(p^d), > and no failures). Only compute the defining poly for the right element. > XR 9- padicfields(huge p, d) was very slow [even though ramification is tame] > 10- gcd(1/2, 1+I*1.) -> SEGV [#1563], 2.5.5 returned the wrong answer 1/2 > 11- mathnf(t_VEC) could corrupt input (change sign) > 12- [libpari] RgM_transmul did not work > 13- [libpari] Fq_issquare didn't support T=NULL > 14- [libpari] nfpow_u didn't handle non-integral rational numbers > 15- eint1(0) -> stack overflow [#1568] > 16- liftint(List([0])) -> gerepile bug > 17- factorint(n,flag): flag was ignored when n fit into a long > 18- factor(n,lim): lim was ignored when n fit into a long > 19- nfrootsQ(t_POL with leading coeff -1) could miss some solutions, e.g. > nfroots(,-y^2-24476*y+119814917) -> [] instead of [-28657,4181] > 20- precprime(1) -> invalid t_INT [#1576] > 21- gaffsg(0, t_PADIC): wrong valuation > 22- thue(f^e*g, ...), e even, (f,g)=1 missed solutions such that f<0 > 23- faster znlog when p-1 has only smallish prime factors. > 24- (t_INTMOD with word-sized modulus)^(huge negative power) wrong [#1584] > 25- (gp -p N) or (primelimit=N in gprc_ for N >= 436273290 resulted in an > incorrect primetable. N.B. Such commands are now useless: needed primes > are produced dynamically anyway. > 26- monomial(exact zero, d, v) returned an invalid t_POL / t_RFRAC > 27- contfracpnqn(v, n) returned partial quotients p[-1]/q[-1] ... > p[n-1]/q[n-1], instead of the documented p[0]/q[0] ... p[n]/q[n] [#1580] > 28- isprime(N, 0) was often slower than either of isprime(N, 1 or 2) > 29- factor((3+4*I)/25) -> factor 2+I had 0 exponent [#1586] > 30- made qfbclassno more reliable (fixes all counter examples in [#1411]) > BA 31- iferr() could crash if some component of the t_ERROR were clones. > 32- nffactor() could overflow the stack when default accuracy too low: e.g. > nffactor(y^2-22, x^2+926246528884912528275985458927067632*y-4344481316563541186659879867597013188) > 33- some elliptic curve functions accepted (elladd, ellmul) a Weierstrass > 5-uple [a1,a2,a3,a4,a6] instead of an ell structure. No longer. > Now only ellinit and ellchangecurve allow this syntax. > 34- incorrect rounding in mulrr/divrr for one-word precision reals. > BA 35- multiif did not handle correctly return() in conditions [#1590] > 36- [0..5] -> [0,0,0,0,0] on some architectures > 37- is_gener_Fp could return wrong results > 38- Fq_sqrtn(t_INT,..,&zeta) could return a wrong root of 1 > 39- bnfinit: SEGV due to precision issues [#1592] > 40- zm_zc_mul only worked for square zm matrices > 41- genus2red(0,27*x^5+97*x^4+118*x^3+60*x^2+13*x+1,3) -> bug msg [#1596] > 42- [gphelp] oo loop when $COLUMNS too small [#1594] > 43- genus2red(x,-x^6-3*x^4-10*x^2-1,3) -> impossible inverse [#1597] > 44- factoru(1) returned a t_MAT instead of the expected "matsmall" [#1598] > 45- FpM_charpoly wrong in small characteristic [#1602] > 46- Ser(Mod(0,2)) => incorrect object [#1587] > 47- Ser(Mod(1,2)*x^2,,4) => incorrect precision [#1587] > 48- Ser(x,v,prec < 0) => crash [#1587] > 49- The t_SER Mod(0,2) + O(x^n) was not handled properly [precision and > valuation would change unexpectedly] [#1587] > 50- when compatible = 3; series() used a random precision > 51- genus2red(0,6*x^6+5*x^4+x^2+1,7) -> impossible inverse [#1597] > 52- isprime(2030967737887612953751815611955778057721609672149695775998900201419048774375002716065557720510887824952942799737911826638068045234238082640629966597954851668852106621828704531597859470496362810381251800973022824003330423370127762722630493369197869948901862977534730314352222720177713223750671181797) > -> SEGV [#1604] > 53- genus2red(x^3+1,1) -> type error [#1597] > 54- gphelp did not handle === correctly [#1603] > XR 55- bnrL1(bnrinit(bnfinit(x^2-168),[6,[1,1]],1)) -> bug in ArtinNumber[#1601] > 56- FpXY_evaly() wrong when evaluating at 0 > BA 57- [win32] gp could crash at start up [#1607] > 58- nfisincl(t_POL, t_POL) could lead to wrong negative results > 59- polresultant(1+x*z^2,1+y*z^4,z) -> GC error [#1614] > BA 60- ellcard over non-prime fields of large char could return wrong results > 61- [libpari] FpX_roots could produce GC errors [#1618] > 62- weber(1+I) was missing its imaginary part > 63- (1+I)*(1+1/2*I) => wrong result (type errors) [#1619] > 64- contfracpnqn([a]) => [1,a;0,1] instead of [a,1;1,0] > 65- primes([2^50, 2^50+200000]) => stack overflow > 66- issquare((x+1/2)^2,&z); z => 1.0*x+0.5 instead of x+1/2 > 67- possibly wrong result in nfsnf > 68- possibly missing roots in nfroots (when using Trager) > 69- quadray(bnf, ideal) did not work > 70- thue(-14*x^3 + 10*x^2 + 63*x - 5,1) -> "short continued fraction" [#1629] > 71- thue(29*x^3+130*x^2-35*x-48,1) -> "round error" bug > 72- T=thueinit(10*x^3+6*x^2-41*x+8,1); thue(T,8) => SEGV [#1630] > 73- ellrootno(e,p = 2 or 3) when e not minimal at p => random result > 74- catastrophic cancellation in ellheight (at oo) [#1637] > 75- bnfnewprec could return a corrupt bnf structure: > K=bnfinit(x^3-15667*x^2-88630960*x-1836105977032,1); > bnfisprincipal(K,[29,14,15;0,1,0;0,0,1],3) -> oo loop > 76- agm(1,2+O(5)) -> SEGV [#1645] > BA 77- [cygwin64] ellap(ellinit([0,0,1,-1,0]),10007) broken > 78- primes([-5,5]) -> [5] (spurious absolute values) > 79- matqr([;]) -> crash > 80- Fp_rem_mBarrett could return a non-normalized result > p=436^56-35;Mod(271,p)^((p-1)/2) -> p+1 > 81- plotcopy would corrupt "string" objects (ROt_ST) > BA 82- [GP] default arguments to GP functions could cause corruption [#1658] > VBr83- [darwin] remove obsolete linker options that cause crashes [#1623] > 84- divisors([2,1]) -> SEGV [#1664] > 85- acos([Pol(1)]) -> GC bug [#1663] > 86- matsolve(a,b) and a^(-1) gave wrong results [or SEGV] when t_MAT a > was not square and a,b "modular" (F2m,Flm,FpM,FqM,F2xqM,FlxqM) [#1666] > 87- primes([1,Pol(2)]) -> SEGV [#1668] > 88- znlog(0,Mod(1,4),1) -> 0 (instead of []) > 89- polzagier / sumalt(,1) / sumpos(,1) were slow and used too much memory > 90- sumpos was wasting time when pre-computing \sum 2^e a(k*2^e) [ only > needed for k odd, but was also done for k = 0 mod 4 ] + improve accuracy > 91- intnum(x=[0,-1/2],[oo,-3/2],1/(sqrt(x)+x^(3/2))) -> junk t_COMPLEX > (more generally: one endpoint has an algebraic singularity and the > other is +-oo, non-oscillatory > 92- intnum(x = [-oo,-3/2], [oo,-5/2], f(x)) --> loss of accuracy due to > confusion between endpoint behaviours a/b in intnuminit data > E.g. f(x)=(x<0,1/(1+(-x)^(3/2)), 1/(1+x^(5/2))); > 93- intnum(x = [-oo,-3/2], [oo,-5/2], f(x)) --> loss of accuracy due to > confusion between endpoint behaviours a/b in intnuminit data > E.g. f(x)=(x<0,1/(1+(-x)^(3/2)), 1/(1+x^(5/2))); > 94- intnum(x=[0,-1/2],[1,-1/3], x^(-1/2) + (1-x)^(-1/3)) -> error [didn't > suport singularities at both endpoints] > 95- buffer overflow after default(format,"f.precision") (whenever many > initial zeroes) > 96- qfminim(A, 0, ...) -> stack overflow [#1682] > 97- e=ellinit("11a1"); ellztopoint(e,3*e.omega[1]/5) -> [5, junk] > (instead of expected [5,5]) [#1683] > 98- bnfinit(quadhilbert(-2180)) -> precision error [#1688] > 99- div_scal_rfrac could create an invalid t_POL [#1651] > 100- polroots(t_POL with leading coeff = 0) -> fp exception or error [#1690] > 101- \r cannot deal with very long filenames [#1616] > 102- rnfisabelian(nf, non monic t_POL) -> SEGV [#1693] > 103- Vecrev(x,n) / Colrev(x,n) when 'n' is not omitted: it wasn't true > that Colrev/Polrev were inverse functions [#1698] > 104- possibly incorrect result in nfdisc(T,listP) even though listP included > all prime divisors of the field discriminant. Example: > p=10^100+267; q=10^120+79; > T=polcompositum(x^2-p,x^2-q,2); > nfdisc([T,[2,p,q]]) > 105- wrong dim(Ker) returned by ZM_pivot => SEGV in Z-linear algebra routines. > E.g. setrand(1);quadclassunit(-612556842419) [#1700] > 106- moebius(factor(18)) -> 1 instead of 0 [#1702] > 107- ispower(-167^10) => domain error [#1703] > 108- ispowerful(factor(0)) != ispowerful(0) > 109- expm1(2*I) => wrong result > 110- gamma(1+a*x+O(x^2)) => error [#1707] > 111- printsep() printed its argument in random format, instead of f_RAW as > print() [#1708] > 112- nfdisc(x^10 - 29080*x^5 - 25772600) -> oo loop [#1710] > 113- forprime engine could skip (fast) sieve in favour of (slow) > nextprime [#1711] > 114- 0^[1] -> domain error [#1713] > 115- memory leaks (clones) in ellchangecurve [#1716] > 116- zeta inaccurate around 0 [ from 2.7 ], [#1714] > 117- ellj(simple t_SER in 'x) much slower than in other variable [#1720] > 118- bnrrootnumber did not support the trivial character in the form [0,..,0] > 119- default(log,1) when logfile is write-protected later lead to SEGV [#1730] > BA120- 2-adic gamma function: fix accuracy loss > 121- A==A -> 0 for A a t_SER of huge accuracy (so that A-A overflows > valuation) [#1734] > XR122- P=[1,-2,12,-12,-181,-4,-6899,9780,6360,702,-45]; setrand(3); nfdisc(P) > -> wrong answer [ crash if setrand(138) ] [#1735] > 123- select(x->x,Vecsmall([1,2,3]),1) -> crash [#1737] > 124- (1./x+O(1))-(1./x+O(1)) -> 0.E-38*x^-2+O(x^-1) [#1741] > BA125- [libpari] RgV_to_RgX_reverse did not work if v[1] or v[2] was 0 > 126- bnfinit(x^3-87156*x^2-6728799*x-456533) [#1736] > 127- Rg_to_ff: incorrect type in zk_to_ff [#1755] > BA128- nfsubfields could fail [#1758] > 129- rare SEGV in ArtinNumber [#1759] > 130- K.codiff incorrect if [K:Q] > 2 > 131- chinese([]) -> '1' instead of Mod(0,1) > 132- m1=Mod(0,1);m2=Mod(1,x^2+1); chinese(m1,m2) -> m1; chinese(m2,m1) -> m2 > [instead of error] > 133- nfrootsof1(polcyclo(85)) -> 85 instead of 170 [#1766] > 134- at \p19, polroots((x+1)^2 * (x-1)^7 * (x^2-x+1)^5 * 1.0) -> SEGV [#1767] > BA135- ellsea returned the trace instead of the cardinal as documented. > BA136- ellsea(,,1) could return a wrong result [#1768] > 137- rnfconductor: sanity checks were not taken into account > MC138- memory leak in pari_close: sopath not freed > HC139- incgam(30,60) < 0. More generally, wrong results for s >> 1 [#1689] > HC140- excessive loss of accuracy in incgam, incgamc, eint1 > 141- isprimepower(30011^(3*17)) returned 0 > 142- a = Mod(1,x); z = Mod(0,Pol(1)); chinese(a, z) works > but chinese(a, simplify(z)) failed > BA143- [mpi] interrupt/alarm could caused a crash > BA144- [mpi] relinking empty t_LIST caused a crash > 145- ispower(t_POL) didn't work in small characteristic [#1779]; make it work > over finite fields > BA146- my(s=1,a=0);forstep(i=1,20,s,s++;a+=i);a -> wrong result > KR147- gphelp -detex: accented letters counted as 1 char for line splitting > but rendered as 2 > 148- sqrt(0) -> loss of accuracy (sqrtn was correct) > 149- nfgaloisconj(t_POL T) was unnecessary slow when large divisors > of disc(T) were internally detected (and subsequently ignored) > BA150- elltatepairing could return wrong results [#1784] > 151- padicappr(x^3+1,-2+O(2^5)) -> SEGV [mod a root mod p] [#1793] > 152- K = bnrinit(bnfinit(y^2-5),[1,[1,1]]); bnrdisc(K) -> wrong [#1804] > 153- ellztopoint(ellinit([-1,0]), I) -> wrong result [#1800] > Potentially affected all elliptic functions (ellwp,ellzeta,ellsigma) > at real or pure imaginary arguments. > 154- gamma(2+x) did not start with an exact 1, unlike gamma(1+x). > lngamma(2+x) didn't have valuation 1 > 155- gamma(t_INT+x) at large accuracy and seriesprecision was very slow, > even for small t_INTs (same for lngamma and psi). E.g. at \p1000 > gamma(1000+x+O(x^100)) > 156- a=Mod(y,y^2+1); Mod(a, x^2-2) == a returned 0 [#1806] > 157- x \/ y did not conform to documentation when either x or y was a > t_REAL. E.g. 28/10 \/ 1 == 3 but 2.8 \/ 1 == 2. Now both return 3 [#1811] > BA158- digits(N,B) with 31/63 bit B could return wrong result > BA159- [pthread] parallel GP could leak memory > 160- ellinit(E, O(p^n)) was slightly incorrect for E / Q [ started by > approximating exact equation mod p^something instead of keeping > everything exact ] > 161- ellinit(E, O(2^n)) was hardly supported, e.g. > ellinit("14a1",O(2^5)).tate => precision too low in p-adic AGM. > BA162- polrootsmod(x^3-1, not a prime) -> SEGV (BIB) > BA163- [windows] MPQS could fail due to temporary files > 164- matsnf([27, 0; 0, 3; 1, 1; 0, 0],1+4) -> SEGV > 165- gcd(Mod(1,2)*x+Mod(1,2), Mod(0,2)) -> Mod(1,2) > 166- qfperfection() only allowed matrices of small norm [#1719] > 167- wrong formula for poldisc when characteristic divides degree [#1831] > 168- wrong result for poldisc(ZX) in huge degree [#1830] > 169- missing typechecks in ellheight() [SEGV on BIB] > 170- ellminimalmodel() didn't use a coprime bases so that it > was very slow for [c4,c6] = [p^5*q, p^6*q] for huge p and q > BP171- ellpointtoz(E / Qp) was totally wrong [#1833] > 172- genus2red(177*x^6+126*x^5-63*x^4+72*x+84) -> bug in labelm3 [#1826] > 173- normalize genus2red stable reduction output: a type K1-K2-r now > guarantees K1 <= K2 (before both K1-K2-r and K2-K1-r could occur) > 174- gmulsg(0, 1+O(x)) -> O(x^0) instead of t_INT 0 as in gmul(gen_0, ...) > > Added > 1- add optional argument to sumdigits to specify the base > 2- [libpari] bits_to_int,bits_to_u,binary_zv,binary_2k,binary_2k_nv > BA 3- [GP] support for variadic GP functions (f(v[..])=expr) > 4- nfeltval(K, x, pr, &y) now takes an optional 4th argument, containing > the part of x coprime to pr. > BA 5- [libpari] New functions family RgXn: new functions RgXnV_red_shallow, > RgXn_powers, RgX_RgXnV_eval, RgX_RgXn_eval, RgXn_reverse, RgXn_inv, > RgXn_exp > BA 6- [libpari] New functions Flv_inv > BA 7- [libpari] New functions Flx_Flv_eval, Flv_Flm_polint, > FpX_FpV_eval, FpV_FpM_polint > WH 8- [libpari] New low-level functions get_Fl_inv, remll_pre > BA 9- [libpari] New low-level functions Fl_sqr_pre, Fl_mul_pre, remlll_pre, > Fl_powu_pre, Fl_sqrt_pre, divll_pre, random_Fle_pre > 10- [TeX documentation] new primitive \url (verbatim arg) > 11- [libpari] New functions Fq_log, gener_Fq_local > BA 12- GP functions bnrisgalois, bnrgaloismatrix, bnrgaloisapply > LGr13- GP function polrootsreal > 14- GP constant "oo" (for +/- infinity) > 15- [libpari] New functions mkoo, mkmoo, inf_get_sign > 16- [libpari] New functions ellbasechar, ec_f_evalx, ec_dfdx_evalQ, > ec_dfdy_evalQ, ec_2divpol_evalx, ec_half_deriv_2divpol_evalx, ec_h_evalx, > ec_dmFdy_evalQ, ec_bmodel > HIL17- GP functions ellisogeny, ellisogenyapply > 18- [libpari] New function RgX_coeff > BA 19- [libpari] New functions Fl_halve, Fp_halve, Flx_halve, Fq_halve > BA 20- [libpari] New functions vecsmallpermute, vec_append > 21- GP functions qfsolve, qfparam [ adapted from Denis Simon's qfsolve.gp ] > 22- [libpari] New function ZM_transmul > 23- allow elliptic curves over number fields: ellinit([a1,...,a5], nf) > 24- [libpari] ZX_sturm, ZX_sturmpart, RgX_sturmpart > 25- [libpari] RgXQV_RgXQ_mul > 26- thue / thueinit now also support (powers of) imaginary quadratic equations > BA 27- [libpari] ZpX_ZpXQ_liftroot, ZpX_ZpXQ_liftroot_ea > 28- [libpari] fuse_Z_factor > 29- ellformalw, ellformalpoint, ellformaldifferential, > ellformallog, ellformalexp, ellnonsingularmultiple, ellpadicheight, > ellpadicheightmatrix, ellpadics2, ellpadiclog > BA 30- [libpari] functions FpX_powu, FpX_digits, FpX_fromdigits, > FpXQX_powu, FpXQX_digits, FpXQX_fromdigits, FqX_powu > BA 31- GP functions ellpadicfrobenius, hyperellpadicfrobenius, hyperellcharpoly > 32- [libpari] function RgX_normalize > BA 33- much faster matfrobenius/minpoly(t_MAT) > BA 34- prototype codes U and u for ulong > 35- allow testing for BITS_IN_LONG in gprc > 36- GP functions msinit, ellpadicL > BA 37- [mingw] support for the alarm GP function > BA 38- [libpari] functions Fl_sqrtl, Fl_sqrtl_pre > 39- [libpari] function ZV_allpnqn > 40- [libpari] function Qevproj_init, Qevproj_apply, Qevproj_apply_vecei > 41- [libpari] functions G_ZGC_mul, G_ZG_mul, ZGC_G_mul, ZGC_Z_mul, ZG_G_mul, > ZG_Z_mul, ZG_add, ZG_mul, ZG_neg, ZG_normalize, ZG_sub, > ZGC_G_mul_inplace, ZGCs_add > 42- [libpari] function kroui > BA 43- GP function powers and libpari function gpowers > 44- flag LLL_COMPATIBLE for LLL routines [ use 64-bit compatible accuracies > only ] > BA 45- [libpari] functions FpX_Frobenius, FpX_matFrobenius, Flx_Frobenius, > Flx_matFrobenius, ZpX_Frobenius, F2x_Frobenius, F2x_matFrobenius > 46- [libpari] function ser_isexactzero > BA 47- [libpari] functions ZV_chinese, Z_ZV_mod, Z_nv_mod, nmV_chinese_center > BA 48- GP function fromdigits > BA 49- [libpari] functions Zp_sqrt, ZpXQ_sqrt > 50- GP functions mscuspidal, mseisenstein, msnew, mssplit, msqexpansion, > mshecke, ellmsinit, msatkinlehner, msstar, mseval, mspathgens, mspathlog, > msissymbol, msfromcusp, msfromell > BA 51- GP declaration localprec(), localbitprec() > HIL52- [libpari] functions Fl_powers_pre, Fl_ellj_pre, Fl_elldisc_pre, > Fl_elltwist_disc > BA 53- [libpari] functions Fl_powers, Fp_powers, Fl_ellj, Fl_elldisc, > Fl_ellj_to_a4a6, Flxq_ellj_to_a4a6 > BA 54- [libpari] functions FpXQX_div_by_X_x, FqX_div_by_X_x > HIL55- [libpari] function Flx_oneroot_split, zxX_to_FlxX, RgXY_degreex > BA 56- [libpari] functions Flv_inv_pre, Flv_inv_inplace, Flv_inv_pre_inplace > HIL57- GP function ellissupersingular > HIL58- [libpari] functions Fp_elljissupersingular, FpXQ_elljissupersingular > BA 59- [libpari] functions umodsu, zx_to_Flx, corediscs > 60- GP function qfbredsl2 > 61- [libpari] functions ell_is_integral, ellintegralmodel, ellQ_get_CM, > ellorder_Q, ellap_CM_fast, point_to_a4a6, point_to_a4a6, Fl_elltrace_CM, > Fle_changepoint, Fle_changepointinv, Fle_log > 62- allow elltors and ellorder for E/K number field > 63- GP function ellxn, ellisdivisible > HIL64- [libpari] function family Flj_* > 65- [libpari] idealprimedec_limit_f, idealprimedec_limit_norm > 66- [libpari] modpr_get_p, modpr_get_T, modpr_get_pr > 67- GP function nfsplitting > HIL68- [libpari] functions Flv_dotproduct_pre, Flx_eval_pre, > Flx_eval_powers_pre, FlxY_eval_powers_pre, FlxY_evalx_powers_pre > HIL69- GP functions polclass, polmodular > BA 70- ellcard over fields of medium characteristic (SEA, Kedlaya, Satoh) > 71- GP functions varhigher() / varlower() / variables() > BA 72- GP function self() (for defining recursive anonymous functions) > BA 73- GP function fold() > 74- [libpari] hash_create_ulong, hash_create_str, hash_select, > hash_remove_select, hash_keys, hash_values > 75- allow serlaplace(t_POL) > 76- GP function ispseudoprimepower > 77- [libpari] functions FpM_add, Flm_add, FpM_Fp_mul, RgMrow_zc_mul > 78- [libpari] function nfembed, nfissquarefree > 79- new binary flag to polcompositum: assume fields are linearly disjoint > 80- GP function nfcompositum > AP 81- [GP] associative and central simple algebra package, functions > algabsdim algdisc algisramified algrandom > algadd algdivl algissemisimple algrelmultable > algalgtobasis algdivr algissimple algsimpledec > algaut alghasse algissplit algsplittingdata > algb alghassef algleftmultable algsplittingfield > algbasis alghassei algmul algsplittingmatrix > algbasistoalg algindex algmultable algsqr > algcenter alginit algneg algsub > algcentralproj alginv algnorm algsubalg > algchar alginvbasis algpoleval algtableinit > algcharpoly algisassociative algpow algtensor > algdecomposition algiscommutative algprimesubalg algtrace > algdegree algisdivision algquotient algtype > algdim algisdivl algradical > algisinv algramifiedplaces > 82- [libpari] functions rnf_get_alpha, rnf_get_idealdisc, rnf_get_k > 83- [libpari] functions ZC_is_ei, RgC_is_ei, ZM_Z_div, ZMV_to_FlmV, checkal > 84- [libpari] functions cbrtr, cbrtr_abs > 85- nfinit(rnf) now returns an nf structure associated to rnf.polabs > 86- idealprimedec now allows an optional 3rd argument, to limit f(P/p) > 87- [libpari] cb_pari_err_handle callback > 88- [libpari] function nf_get_ramified_primes > 89- Configure --with-runtime-perl option > PB 90- Faster matrix multiplication over finite fields > 91- allow content(t_VECSMALL) > 92- [libpari] ZX_div_by_X_1 > HC 93- intnumgauss / intnumgaussinit: Gauss-Legendre quadrature > LGr94- GP function sinc > HC 95- contfracinit / contfraceval functions > HC 96- limitnum / asympnum > BA 97- [libpari] functions FlxV_prod, RgV_prod > BA 98- GP function ellfromeqn > HC 99- gammamellininv, gammamellininvasymp, gammamellininvinit > BA 100- [libpari] RgX_Rg_eval_bk, RgX_RgV_eval, RgXV_RgV_eval > 101- [libpari] RgX_cxeval > HC 102- GP function zetamult > PB 103- ZM_mul: Add Strassen-Winograd algorithm > 104- GP functions sumnummonien/sumnummonieninit > 105- [libpari] RgM_gram_schmidt, RgM_Babai > BA 106- GP function cotanh > 107- support sign(t_QUAD with positive discriminant) > 108- comparison operators (<,>,<=,>=): support t_QUAD with *same* positive > discriminant > BA 109- [libpari] Flv_prod, Flv_prod_pre > BA 110- [libpari] Flv_neg, Flv_neg_inplace > ED 111- mingw64 support > BA 112- [parallel] new GP function parforvec > BA 113- [libpari] Fl_addmul_pre, Fl_addmulmul_pre > BA 114- [libpari] Fl_eltwist, Fp_elltwist, FpXQ_elltwist, Flxq_elltwist, > F2xq_elltwist > BA 115- GP functions elltwist, ellminimaltwist > 116- [libpari] omegau, bigomegau > VB 117- GP support for 0xffff and 0b1111 (input t_INT in binary or hex notation) > BA 118- GP functions ellisomat > HC 119- GP function ramanujantau > PB 120- Speed up {Flx,FpX,FpXQX}_divrem_basecase for modulus of the form > x^n+O(x^m) with m small > HC 121- GP function solvestep > 122- [GP] New lfun family of functions > lfun lfundiv lfunmfspec > lfunabelianrelinit lfunetaquo lfunmul lfuntheta > lfunan lfunhardy lfunorderzero lfunthetainit > lfuncheckfeq lfuninit lfunqf lfunzeros > lfunconductor lfunlambda lfunrootres lfunartin > lfuncreate > 123- [libpari] nfchecksigns, idealchineseinit > JD 124- [libpari] gp_read_str_multiline > BA 125- [libpari] Flx_nbfact_Frobenius, FpX_nbfact_Frobenius > 126- extend idealchinese() to impose sign conditions at specified real > places [#1501] > 127- [libpari] qfb_equal1, qfi_order, qfi_log, qfi_Shanks > 128- [libpari] RgV_kill0 > BA 129- factorcantor: use Shoup-Kaltofen algorithm (much faster) > BA 130- [libpari] FpX_dotproduct, Flx_dotproduct > JK 131- FpXQ_minpoly/Flxq_minpoly: use Shoup algorithm (much faster), and do > not assume modulus is irreducible > BA 132- [libpari] idealramfrobenius, idealfrobenius_aut, nfgaloispermtobasis > 133- Allow ??lfun, ??Lmath, etc. [#1753] > 134- [libpari] cyc_normalize, char_normalize, char_check, char_rootof1, > char_rootof1_u, bnrchar_primitive, bnrconductor_i > 135- GP functions charker, bnrchar > 136- bnrconductor(bnr, chi) as a shortcut for bnrconductor(bnr, Ker chi); > same for bnrisconductor, bnrdisc and bnrclassno > 137- [libpari] real_1_bit(), grootsof1() > PB 138- [libpari] Flm_sub, FpM_sub > BA 138- [libpari] get_FpXQX_mod, get_FpXQX_degree, get_FpXQX_var, > FpXQX_get_red, FqX_get_red, random_FpXQX > BA 139- [libpari] get_FlxqX_mod, get_FlxqX_degree, get_FlxqX_var, > FlxqX_get_red, random_FlxqX > BA 140- Prototype code 'b' and default 'realbitprecision' > 141- \pb shortcut [ manipulate realbitprecision ] > BA 142- [GP] Map, mapget, mapput, mapisdefined, mapdelete > BA 143- [GP] bitprecision > BA 143- [arm64] add aarch64 assembly kernel > 144- [libpari] ZV_snf_group, ZV_snfall > 145- [libpari] znstar0 with Idealstar semantic; could be made available under > GP as default znstar, but current znstar/idealstar have incompatible > defaults. Called by idealstar(,N). > 146- [GP] znconreychar, znconreyexp, znconreylog, znconreyconductor, > charorder, charconj > BA 147- [GP] call (for calling closures). > 148- [GP] optional flag to forell [ loop over isogeny classes ] > 149- lfunthetacost, lfuncost > SCh150- [mingw] timer: support for user time > JD 151- [libpari] pari_completion interface for readline > SCh152- [mingw+pthread]: default nbthreads support > 153- teichmuller([p,n]) to cache all value at i + O(p^n), 1 <= i < p > 154- optional argument 'tab' to teichmuller(x) > 155- [GP] function chareval, charmul, chardiv, zncharinduce, zncharisodd > 156- [libpari] Flm_intersect > 157- [libpari] ggamma1m1 > 158- allow ispower(t_POLMOD representing a finite field element) > 159- [libpari] Fq_ispower, FqX_ispower, RgX_deflate_order, Fq_to_FF, > FqX_to_FFX > 160- [libpari] Z2_sqrt, divisorsu_fact, usumdiv_fact, usumdivk_fact > 161- gphelp -detex: new flag -utf8 to allow utf-8 encoding in output, e.g. > render \'{e} as é (the actual eight-bit char) instead of 'e > 162- GP function msfromhecke, msgetlevel, msgetweight, msgetsign > BA 163- qfisominit: allow to pass the matrix of minimal vectors [#1656] > 164- [libpari] GENtostr_raw > BA 165- [libpari] FlxqX_halfgcd, FpXQX_halfgcd > 166- issquare(t_POLMOD of t_INTMOD) assuming a finite field > 167- RgXn_powu, RgXn_powu_i > 168- [libpari] is_real_t, R_abs, R_abs_shallow > BA 169- [libpari] F2xX, F2xqX, F2xqXQ family functions > 170- GP functions rnfidealprimedec, rnfidealfactor > BA 171- [libpari] get_FpX_algebra, get_FpXQ_algebra, get_FpXQX_algebra, > get_FlxqXQ_algebra, get_FpXQXQ_algebra, get_Rg_algebra > 172- E/Qp: Added Mazur-Tate-Teitelbaum's L invariant to E.tate > BA 173- [libpari] ZpXQ_div, ZpXQX_divrem, ZpXQX_digits > 174- [libpari] ZX_deflate_max, ZX_deflate_order > 175- [libpari] idealinv_HNF, idealinv_HNF_Z > 176- [libpari] QM_charpoly_ZX_bound > BA 177- libpari support for low-res plot() > 178- GP function serprec > 179- ellap(E,p), ellcard(E,p) for E/K number field, and p maximal ideal > 180- [libpari] function sertoser > 181- ellan(E, n) for E/K number field > 182- [libpari] function gisexactzero > BA 183- GP function ellsea > 183- [libpari] nfsub, Rg_RgC_sub, Rg_RgC_sub, Z_ZC_sub > 184- [libpari] zkchinese, zkchinese1, zkchineseinit > 185- [libpari] vecsmall_reverse > 186- [libpari] Z_ppio, Z_ppgle, Z_cba > 187- ellminimalmodel over number fields > 188- [libpari] FpX_factor_squarefree, Flx_factor_squarefree > 189- [libpari] checknf_i, checkbnf_i, checkbid_i, checkrnf_i > > Changed > 1- make log(+/-I) return (+/-)Pi/2*I with gen_0 real part [#1556] > BA 2- [libpari] rename RgX_mullow -> RgXn_mul, RgX_sqrlow -> RgXn_sqr, > RgX_modXn_eval -> RgXn_eval, RgX_modXn_shallow-> RgXn_red_shallow > 3- change rnfnormgroup to return [;] instead of raising an error whenever > it detects a problem (modulus not a multiple of the conductor, non-abelian > extension...): this is a BIB with undefined result, but returning a > sentinel is more useful *if* we notice it. > 4- [gp] uniformize errors from the % history operator (SYNTAX->MISC) [#1553] > 5- t_STR used to compare as larger than any real number via < or > > operators. Such a comparison now raises an exception. > 6- valuation(0,p), nfeltval(nf,0,pr), idealval(nf,0) now all return +oo > poldegree(0) now returns -oo > BA 7- rootpadicfast renamed ZpX_roots > 8- nfinit: switch from sturm() to ZX_sturm() [Uspensky], and from polroots > to polrootsreal (totally real fields). polsturm() now uses Uspensky in > most cases. > 9- polsturm interface change > - polsturm(T, a, b) is still supported but deprecated, use > polsturm(T, [a,b]) > - polsturm(T, a, b) used to return the number of roots in ]a,b], > we now use the closed interval [a,b]: more intuitive given the new > syntax, and compatible with polrootsreal() > BA 10- [libpari] mkintn: handles arguments as 32bit unsigned int > 11- nfdisc, nfbasis: no longer support the old (T,flag,fa) arguments. > Use the generic [T,listP] syntax (see 2.6.0-C105) > 12- factorpadic: no longer support the deprecated (no-op) 'flag' argument > 13- thue() sort solutions lexicographically > 14- thueinit tnf format: always include a bnf (also when r1=0), to allow > checking for norm equation solutions first: e.g. thue(x^4+1,7*10^80) > becomes instantaneous instead of overflowing > BA 15- Flx_pow renamed to Flx_powu > 16- optional flag to ellheight is gone (useless) > 17- ellbil(E,P,Q) is now deprecated, use ellheight(E,P,Q) > 18- [libpari] rename ghell->ellheight, mathell->ellheightmatrix > BA 19- Rg_to_RgV renamed to Rg_to_RgC, RgX_to_RgV renamed to RgX_to_RgC > 20- ellL1(e, r): make r optional (default value = 0) > BA 21- powruvec is replaced by powersr > 22- [libpari] merge_factor no longer keeps entries with exponent 0 > Pmo23- More robust and much faster ellL1 and ellanalyticrank. The condition > ord(L_E,s=1) <= r in ellL1(E,r) is no longer necessary. > 24- renamed ZV_gcdext -> ZV_extgcd for consistency with other gcdext methods > BA 25- setrand now return a (huge) integer instead of a vecsmall > 26- unify 32/64 bit random generators. Probabilistic algorithm should now > behave identically on all architecture, provided they do not involve > the floating point kernel > 28- unify 32/64 bit tests > 29- move extern(), externstr(), readstr() and system() to the generic > part of GP language (was gp-specific). This allows to use them > in parallel mode and under gp2c [#1593] > 30- made cmprr, cmpri, equalrr consistent with == semantic. We now have, > e.g., 0e1==1.0 and (0e1 < 1) = 0 (since 1-0e1 evaluates to 0e1) > 31- [libpari] comment out function names obsoleted during the 2.3.* cycle > (2007). See PARI_OLD_NAMES. > 32- default 'strictmatch' has been obsoleted. It is now a no-op. > 33- default 'compatible' has been obsoleted. It is now a no-op. > 34- zeta(odd integer): use Borwein's "sumalt" algorithm (10 times faster > than previous at \p1000) > 35- elltors flags are now deprecated (and ignored, removed corresponding > code) > 36- add optional flag to nfhnf / nfsnf: return transformation matrices > 37- nfroots/nffactor: factor polynomials in Q[X] over Q first > BA 38- much faster polresultant over Z > 39- GP and libpari polynomial variables of arbitrary priority can now be > created: 'x' is no longer guaranteed to have maximal priority, > nor MAXVARN to have minimal priority. > 40- GP: polynomial variable 'y' is now always defined on startup, > with priority lower than 'x' > 41- Allow ffgen([p,f]) in addition to ffgen(p^f) and ffgen(T*Mod(1,p)) > 42- thue() needed to compute to huge accuracies when regulator was large > E.g. t=thueinit(15*x^3+8*x^2-95*x+24,1); thue(t,8) > 43- rnf structures may now contain a full absolute nf struct ('nfabs') > 44- matkerint: replace underlying LLL algorithm by mathnf > Simple bench: M=matrix(50,55,i,j,random(10^5)); \\ 200 times faster > 45- allow t_VECSMALL vector exponents in gen_factorback > 47- [libpari] rename 'define' PI -> M_PI and use proper constant > 48- no longer print 0 t_POLMOD as "0", bug e.g. Mod(0,x). Uniformize code > and behaviour with t_INTMOD. > 49- warn when coercing quotient rings when 'debug' non-zero > ? \g1 > ? Mod(1,2)+Mod(1,3) > *** _+_: Warning: coercing quotient rings; moduli 2 and 3 -> 1. > 50- content([]) -> 0 [ was 1 ] > 51- [] / 0 => div. by 0. Now returns [] (as [] \ 0 already did) > LGr52- use GRH-guaranteed bounds in bnfinit for residue estimate > 53- Configure: avoid inserting unnecessary -L arguments in link line > 54- genus2red: change syntax. Allow either genus2red(P) or genus2red([P,Q]) > instead of mandatory Q (was: genus2red(Q,P) with Q almost always 0). > Allow uniformization with hyperellcharpoly > 55- old functions from gp-1.39.15 no longer loaded into an "entree" table, > no longer complete specially "whatnow" arguments; remove compat.c and > most of gp_init.c > BA 56- Rename row_Flm -> Flm_row, row_zm -> zm_row > 57- rewrote intnum / intnuminit routines > 58- nucomp now takes L = floor(|D|^(1/4)) as a 3rd argument. Former > nucomp(x,n) is nucomp(x,n,NULL). > BA 59- divide_conquer_assoc renamed to gen_product > 60- sumnum algorithm (replace Abel-Plana by Euler-Mac Laurin). Changed > the interface ! > BA 61- [libpari] concat, concat1 renamed to gconcat, gconcat1 > 62- rnfconductor now returns [cond, bnr, H] instead of [cond, bnr.clgp, H] > 63- nfrootsof1(), more stringent ramification tests: looking > for a subfield Q(zeta_p^k) is now faster. > 64- intnumromb to use realbitprecision > 65- idealstar / ideallog: allow omitting 'nf' argument (for nf = Q; use > znstar and znlog internally) > 66- improved p-adic log at high accuracy (O(sqrt(padicprec)) algorithm > instead of O(padicprec)) > 67- allow genus2red to handle (rational) non integral models > KR 68- new version of misc/xgp > BA 69- rename Flc_Fl_mul -> Flv_Fl_mul, Flc_Fl_div -> Flv_Fl_div, > RgC_to_Flc to RgV_to_Flv, F2c_to_Flc to F2v_to_Flv > 70- rename leading_term -> leading_coeff, constant_term -> constant_coeff > 71- improve gamma(a+O(x)) > BA 72- Z_to_Flx now takes a shifted variable number, as Fl_to_Flx. > BA 73- improve hash_GEN to reduce # of collisions (change glue) > 74- added explicit ways to attach an absolute nf to a rnf structure, > allowing rnf functions to return objects in standard notation (e.g. > ideals in HNF instead of as a vector of t_POLMOD generators). > Add optional flag to rnfeltabstorel, rnfeltdown, rnfeltup, > rnfidealreltoabs, rnfinit > BA 75- rename FlxqX_pow to FlxqX_powu > 76- polredabs([T,listP]) no longer returns 0 if the attached order cannot > be proven to be maximal: it computes the expected canonical polynomial > in all cases, which can be very slow. Always use polredbest() if you > don't require a canonical output. > 77- polredabs(T) now internally uses the polredabs([T,listP]) strategy, > making it much faster in favourable cases, while still always returning > a canonical defining polynomial. > 78- precision(0), bitprecision(0), padicprec(0,p) now all return +oo > under GP [ used to return LONG_MAX ] > 79- meaning of precision(x, n) no longer depends on the type of x: it now > always refers to floating point precision. Before the change: > precision([O(2),O(3),O(x)], 10) -> [O(2^10),O(3^10),O(x^10)] > 80- infinite slopes of newtonpoly replaced by "+oo" (instead of 2^63-1) > 81- rename anell -> ellan, anellsmall -> ellanQ_zv > BA 82- Fp_ellcard_SEA/Fq_ellcard_SEA meaning of flag has changed. > 83- renamed absi_cmp -> abscmpii, absr_cmp -> abscmprr, > absi_equal -> absequalii, absi_factor -> absZ_factor, absi_factor_limit > -> absZ_factor_limit, equaliu -> absequaliu, equalui -> absequalui, > cmpiu -> abscmpiu, cmpui -> abscmpui > > Removed > 1- deprecated functions nfbasis0, nfdisc0, factorpadic0 > 2- deprecated function manage_var > 3- useless function intnuminitgen (not very useful and impossible to use > reliably together with intnum with boundary conditions) > 4- useless function intnumstep: instead of intnum(a,b, intnumstep()+m), > use intnum(a,b,m). > 5- partially implemented functions intfouriercos / intfouriersin / > intfourierexp / intlaplaceinv / intmellininv / intmellinvshort: use > intnum (possibly intfuncinit). Make sure to indicate oscillating behaviour > when function decrease slowly at oo > 6- optional flag to intfuncinit > BA 7- divide_conquer_prod: use gen_product instead > 8- useless function sumnumalt > 9- badly implemented functions zetakinit / zetak: the interface did not > make sense (it is impossible to initialize for Dedekind zeta without > specifying a domain where the function is to be evaluated). Closest > equivalent to zetakinit: > L = lfuninit(x^2+1, [c, w, h]); > to compute zeta_Q(i)(s) for |Re(s - c)| < w, |Im(s)| < h. Then > lfun(L, s) > as an analog to zetak(). Or directly lfun(x^2+1, s) if a single value > is needed. [#368, #1647] > BA10- [libpari] FpXQX_rem_Barrett, FpXQX_divrem_Barrett: use FpXQX_get_red > BA11- [libpari] FlxqX_rem_Barrett: use FlxqX_get_red > BA12- [libpari] RgX_RgM_eval_col >