R J Cano on Thu, 31 Jan 2013 09:25:50 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Happy capicua day !! |
/* * * Written by R.J. Cano Jan 31 2013 * * The palindromic day: ... 31 2013 * ........................ 31?2013 * ........................ 3102013 * ................................... * ................................... Let be r a radix, Let's set r=10 for the Decimal system; * ................................... * ................................... Truncate 3 digits from right: 3102{013} ---> 3102 * ................................... Truncate 3 digits from left: {310}2013 ---> 2013 * ................................... * ........................................ Subtract: ------------------------- * ........................................ Divide by (r-1): ---> 1089 * ........................................ Again a palindromic: ---> 121 * ........................................ It is a perfect square: ---> 11^2 * ........................................ * ........................................ It is written with the same digits!! * ........................................ Either as it is or as a perfect square ---> 121, 11^2; * ........................................ * ........................................ It is the product of two primes: ---> 121= 11*11 * ........................................ * ........................................ (1+2+1)^(1*2*1)= (1*2*1)^(1+2+1) * ........................................ * ........................................ They are also the product of two (even three) different primes: * ........................................ (regardless the exponents!) * ........................................ i) 121 - (1+2+1) * ........................................ ii) 121 - (1*2*1) = 121 - (1*2*1)! * ........................................ iii) 121 - (1+2+1) - (1*2*1) * ........................................ iv) 121 - (1+2+1)^(1*2*1) = 121 - (1*2*1)^(1+2+1) * ........................................ If it were accidentally deleted a 1 in the 121 of (iii) * ........................................ v) 12 - (1+2+1) - (1*2*1) * .Have..a..nice..Capicua..day!!!......... vi) 21 - (1+2+1) - (1*2*1) * ........................................ * * 121-(1+2+1)! is prime; * -1*matrix(4,4,i,j,(i<=j))*([3,1,0,2]~-[2,0,1,3]~); \\ (PARI/GP) * * Finally, count the dots and the asterisks present inside this comment,,,,,, * subtract both counts, the result is the product of a capicua number by the sum of its digits! * Also the sum of the digits in such difference yields the abbreviation for the year in course :-D */