| R J Cano on Thu, 31 Jan 2013 09:25:50 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Happy capicua day !! |
/*
*
* Written by R.J. Cano Jan 31 2013
*
* The palindromic day: ... 31 2013
* ........................ 31?2013
* ........................ 3102013
* ...................................
* ................................... Let be r a radix, Let's set r=10 for the Decimal system;
* ...................................
* ................................... Truncate 3 digits from right: 3102{013} ---> 3102
* ................................... Truncate 3 digits from left: {310}2013 ---> 2013
* ...................................
* ........................................ Subtract: -------------------------
* ........................................ Divide by (r-1): ---> 1089
* ........................................ Again a palindromic: ---> 121
* ........................................ It is a perfect square: ---> 11^2
* ........................................
* ........................................ It is written with the same digits!!
* ........................................ Either as it is or as a perfect square ---> 121, 11^2;
* ........................................
* ........................................ It is the product of two primes: ---> 121= 11*11
* ........................................
* ........................................ (1+2+1)^(1*2*1)= (1*2*1)^(1+2+1)
* ........................................
* ........................................ They are also the product of two (even three) different primes:
* ........................................ (regardless the exponents!)
* ........................................ i) 121 - (1+2+1)
* ........................................ ii) 121 - (1*2*1) = 121 - (1*2*1)!
* ........................................ iii) 121 - (1+2+1) - (1*2*1)
* ........................................ iv) 121 - (1+2+1)^(1*2*1) = 121 - (1*2*1)^(1+2+1)
* ........................................ If it were accidentally deleted a 1 in the 121 of (iii)
* ........................................ v) 12 - (1+2+1) - (1*2*1)
* .Have..a..nice..Capicua..day!!!......... vi) 21 - (1+2+1) - (1*2*1)
* ........................................
*
* 121-(1+2+1)! is prime;
* -1*matrix(4,4,i,j,(i<=j))*([3,1,0,2]~-[2,0,1,3]~); \\ (PARI/GP)
*
* Finally, count the dots and the asterisks present inside this comment,,,,,,
* subtract both counts, the result is the product of a capicua number by the sum of its digits!
* Also the sum of the digits in such difference yields the abbreviation for the year in course :-D
*/