Karim Belabas on Fri, 21 Sep 2012 08:15:27 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Computing the number of partition tuples... |
* Andrew Mathas [2012-09-21 03:51]: > I am using pari (through sage) to compute the number of k-tuples of > partitions which sum to n. The relevant command to compute the > number of 2-tuples of partitions of 16 inside pari is > > ? polcoeff(1/eta(x)^2, 16, x) > 5822 > > which is correct. However, when I try to compute the number of > 2-tuples of partitions of 17 (which is 8470) then I get > > ? polcoeff(1/eta(x)^2, 17, x) > *** at top-level: polcoeff(1/eta(x)^2, > *** ^-------------------- > *** polcoeff: non existent component in truecoeff. > *** Break loop: type 'break' to go back to GP > > Is this a bug or am I doing something wrong? (08:12) gp > 1/eta(x)^2 %1 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + 300*x^9 + 481*x^10 + 752*x^11 + 1165*x^12 + 1770*x^13 + 2665*x^14 + 3956*x^15 + 5822*x^16 + O(x^17) The series precision is too low, so the 17-th coefficient is unknown. Use 1/eta(x + O(x^101)) if you want to access its 100-th coefficient (for instance). Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50 351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/ F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP] `