Jeroen Demeyer on Thu, 03 Sep 2009 09:41:11 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

Re: [PATCH] short help typos


Lorenz Minder wrote:
Hi,

The attached patch fixes a number of errors in the short online help.
Some more...
Index: src/functions/programming/install
===================================================================
--- src/functions/programming/install	(revision 11889)
+++ src/functions/programming/install	(working copy)
@@ -33,9 +33,9 @@
  ? addii(1, 2)
  %1 = 3
  @eprog\noindent
- Re-installing a function will print a Warning, and update the prototype code
- if needed, but will reload a symbol from the library, even it the latter has
- been recompiled.
+ Re-installing a function will print a warning and update the prototype code
+ if needed. However, it will not reload a symbol from the library, even it the
+ latter has been recompiled.
 
  \misctitle{Caution:} This function may not work on all systems, especially
  when \kbd{gp} has been compiled statically. In that case, the first use of an
Index: src/functions/linear_algebra/matsnf
===================================================================
--- src/functions/linear_algebra/matsnf	(revision 11889)
+++ src/functions/linear_algebra/matsnf	(working copy)
@@ -16,7 +16,8 @@
 
  1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
  unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
- output only the diagonal of $D$.
+ output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
+ will be a square diagonal matrix padded with zeros on the left or the top.
 
  2 (generic input): if set, allows polynomial entries, in which case the
  input matrix must be square. Otherwise, assume that $X$ has integer
Index: src/functions/number_fields/idealadd
===================================================================
--- src/functions/number_fields/idealadd	(revision 11889)
+++ src/functions/number_fields/idealadd	(working copy)
@@ -6,3 +6,6 @@
  defined by nf.
 Doc: sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
  result is given in HNF.
+ This function cannot be used to add arbitrary $\Z$-modules.
+ Instead, one can use \kbd{mathnf(concat(A,B))} to compute the sum of the
+ $\Z$-modules generated by the columns of $A$ and $B$.