John Cremona on Sun, 22 Feb 2009 20:10:07 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: Pari Developers <pari-dev@list.cr.yp.to>
- Subject: ffinit
- From: John Cremona <john.cremona@gmail.com>
- Date: Sun, 22 Feb 2009 19:08:16 +0000
- Delivery-date: Sun, 22 Feb 2009 20:10:07 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:mime-version:received:date:message-id:subject :from:to:content-type:content-transfer-encoding; bh=UD6tTe8UWrZeD2Jj+61eOxVXz9Qdh+iy2jB5tWOyZqQ=; b=oZ4P6LnZqvZ892MqiglBavKTz78zF/UNYbhN1qslZiI9VjW72xp8+XC3cWe9912Bg2 B20+vC3W8ThqtlPv3RHoSdwVNVr9hqPIjnp84xMLJJYyBnc9r80EDYhJDI5XviJKeG3b O9APlEZ3b4fSNVe1/94NS4slhnBG675u2S3dU=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:date:message-id:subject:from:to:content-type :content-transfer-encoding; b=uroGxWj+uO/GnG3NXUYKvHuqMf06FpWWxPb1/7OXgrU6+k2jpEqqE07SW7W2xykroY HXJyw3k5/UQPCygo885klJkUAlgmIyisyxHgpWXqDYAg8vtesJUdj/7n2k/w5lrmRQsT JmjGW7zUv2ZpUZ4V2Grm9DhUfahHksbk/KvHU=
- Mailing-list: contact pari-dev-help@list.cr.yp.to; run by ezmlm
I noticed that ffinit(3,582) produces a polynomial with 333 terms. I
would have thought that using a sparse polynomial as the modulus would
be more efficient (I found x^582 + x^43 + x - 1, for example).
I found the course code in polarit3.c which refers to various papers
and algorithms (Lenstra and Adleman), but can anyone say what are the
benefits of the polynomials these algorithms produce? Actually I
could not quite tell whether in my case it might have been adding a
random poly of degree < 582 to x^582, in which case the denseness of
the reslt is not so surprising.
I only tried this with p=3.
John
- Follow-Ups:
- Re: ffinit
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux1.fr>