Karim BELABAS on Fri, 21 Feb 2003 20:08:07 +0100 (MET) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: peculiar zeta() behavior |
On Tue, 18 Feb 2003, Igor Schein wrote: > ? for(k=70,100,print(k" "zeta(1-1/2^k-2^18))) [...] > 79 9.206091509744517478696623193 E1097349 > *** user interrupt after 23,496 ms. > > looks like bad things start happening near a large negative odd > integer. Well, when the input becomes undistinguishable from an integer, zeta starts using the standard formula zeta(k) = -B_(1-k)/(1-k). Unfortunately, this triggers the computation of the whole table of Bernoulli numbers, instead of using the asymptotic approximation for B_n ( \pm 2 n!/(2Pi)^n, n even ), which is precise enough in this range... [ using approximate values, the computation is done using the functional equation, with the approximation zeta(n) = 1 if n is large, so no problem occurs... ] Fixed. > This is very related: > > http://www.math.mcgill.ca/goren/ZetaValues/zeta.html#explanations If you can reproduce some of the bugs he found out, I'm interested. Karim. -- Karim Belabas Tel: (+33) (0)1 69 15 57 48 Dép. de Mathématiques, Bât. 425 Fax: (+33) (0)1 69 15 60 19 Université Paris-Sud Email: Karim.Belabas@math.u-psud.fr F-91405 Orsay (France) http://www.math.u-psud.fr/~belabas/ -- PARI/GP Home Page: http://www.parigp-home.de/