p-adic computation of
$\mod \ell$ (modular) Galois representations

Nicolas Mascot

Trinity College Dublin

PARI/GP day
June 2nd 2021
The code demonstrated in this talk is not yet well-polished.

I would be happy to hear your suggestions / remarks!
Topics

1. Computations in Jacobians over finite fields
2. \(p \)-adic computations in Jacobians
3. \(p \)-adic computation of mod \(\ell \) Galois representations
4. \(p \)-adic computation of mod \(\ell \) Galois representations attached to modular forms
Computations in Jacobians over finite fields
Let C be a curve of genus $g \in \mathbb{N}$.

The **Jacobian** J of C is an Abelian variety of dimension g.

Abelian: group law on J, similarly to elliptic curves.
Let C be a curve of genus $g \in \mathbb{N}$.

The Jacobian J of C is an Abelian variety of dimension g.

Abelian: group law on J, similarly to elliptic curves.

However, typically the equations of J are really horrible!

\[\leadsto \text{We want to compute in } J \text{ by just looking at } C. \]

NB Jacobian of a curve $= $ Picard group of the curve \approx class group of a number field.

This is possible thanks to Makdisi’s algorithms.
All we need is the matrix

\[
V = \begin{pmatrix}
\nu_1(P_1) & \nu_2(P_1) & \cdots \\
\vdots & \vdots & \\
\nu_1(P_n) & \nu_2(P_n) & \cdots
\end{pmatrix}
\]

where \(\nu_1, \nu_2 \) are “functions” on \(C \) forming a basis of the space of global sections of a line bundle \(\mathcal{L} \) on \(C \) (\(\approx \) Riemann-Roch space), and \(P_1, P_2, \cdots \in C \) are sufficiently many points.
Makdisi’s algorithms

All we need is the matrix

$$V = \begin{pmatrix}
v_1(P_1) & v_2(P_1) & \cdots \\
\vdots & \vdots & \\
v_1(P_n) & v_2(P_n) & \cdots
\end{pmatrix}$$

where v_1, v_2 are “functions” on C forming a basis of the space of global sections of a line bundle \mathcal{L} on C (\approx Riemann-Roch space), and $P_1, P_2, \cdots \in C$ are sufficiently many points.

A point on J is then represented by a matrix

$$W = \begin{pmatrix}
w_1(P_1) & w_2(P_1) & \cdots \\
\vdots & \vdots & \\
w_1(P_n) & w_2(P_n) & \cdots
\end{pmatrix}$$

where w_1, w_2, \cdots is a basis of a subspace.
Example: Smooth quartic over a finite field

We construct the Jacobian J of the curve

$$C : x^4 + 2y^4 + x^3 - 3xy - 2 = 0$$

over \mathbb{F}_{29^3}, and generate a random point on J.

$$J = \text{smoothplanePicinit}(x^4+2*y^4+x^3-3*x*y-2, 29, 3)$$

$$W = \text{picrand}(J)$$

$$\text{picmember}(J, W)$$

$$\text{piciszero}(J, W)$$

$$W2 = \text{picrand}(J);$$

$$\text{piceq}(J, W, W2)$$

$$\text{picadd}(J, W, W2)$$

Hyperelliptic and superelliptic curves are also available.

We plan to implement general curves; the only missing ingredient is Riemann-Roch spaces.

Nicolas Mascot

p-adic computation of Galois representations
Example: Smooth quartic over a finite field

We construct the Jacobian J of the curve

$$C : x^4 + 2y^4 + x^3 - 3xy - 2 = 0$$

over \mathbb{F}_{29^3}, and generate a random point on J.

$J = \text{smoothplanepicinit}(x^4+2*y^4+x^3-3*x*y-2,29,3)$

$W = \text{picrand}(J)$

$\text{picmember}(J,W)$

$\text{piciszero}(J,W)$

$W_2 = \text{picrand}(J)$;

$\text{piceq}(J,W,W_2)$

$\text{picadd}(J,W,W_2)$

Hyperelliptic and superelliptic curves are also available.

We plan to implement general curves; the only missing ingredient is Riemann-Roch spaces.
The zeta function of \(C/F_p \) is

\[
Z(C/F_p, x) \overset{\text{def}}{=} \exp \left(\sum_{n \geq 1} \# C(F_p^n) \frac{x^n}{n} \right) = \frac{L(x)^{\text{rev}}}{(1 - x)(1 - px)}
\]

where \(L(x) = \det(x - \text{Frob}_p|_J) \in \mathbb{Z}[x] \).

Theorem

We have \(\# J(F_p^n) = \text{Res}(L(x), x^n - 1) \in \mathbb{N} \) for all \(n \in \mathbb{N} \).
Frobenius and pairings

If $\mu_\ell \subset \mathbb{F}_q$, we have the Frey-Rück pairing

$$J(\mathbb{F}_q)[\ell] \times J(\mathbb{F}_q)/\ell J(\mathbb{F}_q) \to \mathbb{F}_q^\times /\mathbb{F}_q^\times \ell \sim \mathbb{Z}/\ell\mathbb{Z}.$$

P = pictorspairinginit(J,13);
X = picrand(J);
pictorspairing(J,P,W,X)
pictorspairing(J,P,picmul(J,W,2),X)

\leadsto We can analyse the action of Frobenius on $J(\mathbb{F}_q)[13]$:

FW = picfrob(J,W);
pictorspairing(J,P,FW,X)
piceq(J,picmul(J,W,9),picfrob(J,W))
p-adic computations in Jacobians
Instead of working over $\mathbb{F}_q = \mathbb{F}_p[t]/T(t) = \mathbb{Z}[t]/(T(t), p)$ where $T(t)$ is irreducible mod p, we can work over

$$\mathbb{Z}_q/p^e = \mathbb{Z}[t]/(T(t), p^e)$$

for any $e \in \mathbb{N}$.

J2 = picsetprec(J,21); \ Now mod 29^e, e=21
Y = picrand(J2)
picmul(J2,Y,-3)
picmember(J2,W)
picmemberval(J2,W)
picmemberval(J2,Y)
Hensel-lifting torsion points

If $p \nmid \ell$ is a prime of good reduction of C, the reduction map

$$J(\mathbb{Z}_q)[\ell] \longrightarrow J(\mathbb{F}_q)[\ell]$$

is étale, so we can lift ℓ-torsion points.

$$W_2 = \text{piclifttors}(J_2,W,13);$$
$$\text{picmember}(J_2,W_2)$$
$$\text{picistorsion}(J_2,W_2,13)$$
$$\text{piciszero}(J_2,W_2)$$
$$\text{piceq}(J_2,\text{picmul}(J_2,W_2,9),\text{picfrob}(J_2,W_2))$$
p-adic computation of mod ℓ Galois representations
Let C be a curve of genus g over \mathbb{Q}, let J be its Jacobian, and let $\ell \in \mathbb{N}$.

Then $J(\overline{\mathbb{Q}})[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^{2g}$, and the points of $J[\ell]$ are not defined over \mathbb{Q} in general.

\[\rho_{J,\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{Aut}(J[\ell]) \cong \text{GSp}_{2g}(\mathbb{Z}/\ell\mathbb{Z}).\]
Let C be a curve of genus g over \mathbb{Q}, let J be its Jacobian, and let $\ell \in \mathbb{N}$.

Then $J(\overline{\mathbb{Q}})[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^{2g}$, and the points of $J[\ell]$ are not defined over \mathbb{Q} in general.

\[\rho_{J,\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \text{Aut}(J[\ell]) \cong \text{GSp}_{2g}(\mathbb{Z}/\ell\mathbb{Z}). \]

If $p \nmid \ell$ is a prime of good reduction of C, then $\rho_{J,\ell}$ is unramified at p, and the characteristic polynomial of $\rho_{J,\ell}(\text{Frob}_p)$ is $L(x) \mod \ell$, where $Z(C/\mathbb{F}_p) = \frac{L(x)^{\text{rev}}}{(1 - x)(1 - px)}$.
Let C be a curve of genus g over \mathbb{Q}, let J be its Jacobian, and let $\ell \in \mathbb{N}$.

Then $J(\overline{\mathbb{Q}})[\ell] \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$, and the points of $J[\ell]$ are not defined over \mathbb{Q} in general.

\mapsto Galois representation

$$\rho_{J,\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \text{Aut}(J[\ell]) \simeq \text{GSp}_{2g}(\mathbb{Z}/\ell\mathbb{Z}).$$

If $p \nmid \ell$ is a prime of good reduction of C, then $\rho_{J,\ell}$ is unramified at p, and the characteristic polynomial of $\rho_{J,\ell}(\text{Frob}_p)$ is $L(x) \mod \ell$, where $Z(C/\mathbb{F}_p) = \frac{L(x)^{\text{rev}}}{(1 - x)(1 - px)}$.

We wish to compute $\rho_{J,\ell}$.

Choose prime $p \nmid \ell$ of good reduction of C,

Find $q = p^a$ such that $J[\ell]$ is defined over \mathbb{F}_q,

Generate random points of $J(\mathbb{F}_q)[\ell]$ until we get an \mathbb{F}_ℓ-basis,

Lift this basis from $J(\mathbb{F}_q)$ to $J(\mathbb{Z}_q/p^e)$, $e \gg 1$,

Form all linear combinations of these points in $J(\mathbb{Z}_q/p^e)[\ell]$,

$F(x) = \prod_{t \in J[\ell]} (x - \theta(t))$, where $\theta : J \rightarrow \mathbb{A}^1$,

Identify $F(x) \in \mathbb{Q}[x]$.

Nicolas Mascot

p-adic computation of Galois representations
Example: 2-torsion of the Klein quartic

Let \(C : x^3y + y^3 + x = 0 \). We compute \(\rho_{J,2} \).

\[
\begin{align*}
f &= x^3y + y^3 + x; \\
P &= [1,0,0]; & \text{\(\text{\textbackslash \slash \) Points on } C \)} \\
Q &= [0,1,0]; & \text{\(\text{\textbackslash \slash \) Needed to construct } J \rightarrow A1 \)} \\
l &= 2; & \text{\(\text{\textbackslash \slash \) Look at } J[2] \)} \\
p &= 5; e = 60; & \text{\(\text{\textbackslash \slash \) Work mod } 5^{60} \)} \\
R &= \text{smoothplanegalrep}(f,l,p,e,[[P],[Q]]) \\
fa &= \text{factor}(R[1]) \\
\text{Mat}(\text{apply}(\text{polredabs},fa[,1]))
\end{align*}
\]

We see that the field of definition of \(J[2] \) is \(\mathbb{Q}(\zeta_7) \).
Frequently, we only want the representation ρ_T coming from the points of a Galois-stable \mathbb{F}_ℓ-subspace $T \subset J[\ell]$.

Given $p \in \mathbb{N}$ prime, let

$$L(x) = \det(x - \text{Frob}_p |_{J[\ell]}) \quad \text{and} \quad \chi_T(x) = \det(x - \text{Frob}_p |_T),$$

so that $\chi_T \mid L$.

If χ_T is coprime with $\psi_T = L/\chi_T$, then we can generate random points of T by applying $\psi_T(\text{Frob}_p)$ to random points of $J[\ell]$.

\leadsto We can compute ρ_T.

Nicolas Mascot

p-adic computation of Galois representations
Example: A piece of hyperelliptic 7-torsion

\[h = x^3 + x + 1; \quad C : y^2 + h(x) * y = f(x) \]
\[f = x^5 + x^4; \quad \text{Good reduction away from 13} \]
\[P = [-1,0]; \quad \text{Points on C} \]
\[Q = [0,0]; \quad \text{Needed to construct J -> A1} \]
\[p = 17; \quad e = 30; \quad \text{Work mod } 17^{30} \]
\[l = 7; \quad \text{Look at piece of } J[7] \]
\[\chi = x^2 - x - 2; \quad \text{Where Frob}_{17} \text{ acts like this} \]
\[R = \text{hyperellgalrep}([f,h], l, p, e, [P,Q], \chi) \]
\[\text{PR} = \text{projgalrep}(R); \]
\[F = \text{polredabs}(\text{PR}[1]) \]
\[\text{polgalois}(F) \]
\[\text{factor(nfdisc}(F)) \]

We obtain a polynomial with Galois group \(\text{PGL}_2(\mathbb{F}_7) \) which ramifies only at 7 and at 13.
p-adic computation of mod ℓ Galois representations attached to modular forms
Let \(f = q + \sum_{n=2}^{+\infty} a_n q^n \in S_k(\Gamma_1(N), \varepsilon) \), \(k \geq 2 \), be a newform with coefficient field \(K_f = \mathbb{Q}(a_n, n \geq 2) \).

Pick a prime \(l \) of \(K_f \) above some \(\ell \in \mathbb{N} \).
Let \(f = q + \sum_{n=2}^{+\infty} a_n q^n \in S_k(\Gamma_1(N), \varepsilon) \), \(k \geq 2 \), be a newform with coefficient field \(K_f = \mathbb{Q}(a_n, n \geq 2) \).

Pick a prime \(\ell \) of \(K_f \) above some \(\ell \in \mathbb{N} \).

Theorem (Deligne, Serre)

There exists a Galois representation \(\rho_{f, \ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \text{GL}_2(F_\ell) \),

which is unramified outside \(\ell N \), and such that the image of any Frobenius element at \(p \nmid \ell N \) has characteristic polynomial

\[
x^2 - a_p x + \varepsilon(p)p^{k-1} \in F_\ell[x].
\]
Galois representations attached to modular forms

Let \(f = q + \sum_{n=2}^{+\infty} a_n q^n \in S_k(\Gamma_1(N), \varepsilon) \), \(k \geq 2 \), be a newform with coefficient field \(K_f = \mathbb{Q}(a_n, n \geq 2) \).

Pick a prime \(\ell \) of \(K_f \) above some \(\ell \in \mathbb{N} \).

Theorem (Deligne, Serre)

There exists a Galois representation

\[
\rho_{f,\ell} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \text{GL}_2(\mathbb{F}_\ell),
\]

which is unramified outside \(\ell N \), and such that the image of any Frobenius element at \(p \nmid \ell N \) has characteristic polynomial

\[
x^2 - a_p x + \varepsilon(p)p^{k-1} \in \mathbb{F}_\ell[x].
\]

We wish to compute \(\rho_{f,\ell} \).
Under reasonable hypotheses, \(\rho_{f, \ell} \) is afforded by a Galois-stable piece \(T \subseteq J[\ell] \), where \(J \) is the Jacobian of the modular curve \(X_1(N') \),

\[
N' = \begin{cases}
 N & \text{if } k = 2, \\
 \ell N & \text{if } k > 2.
\end{cases}
\]
Modular curves

Curves

Points

Pairs \((E, \alpha)\)

where \(\alpha : (\mathbb{Z}/N\mathbb{Z})^2 \cong E[N]\)

and \(e_N(\alpha(1,0), \alpha(0,1)) = \zeta_N\)

Pairs \((E, P)\)

where \(P \in E\) has exact order \(N\)

Elliptic curves \(E\)

where \(\zeta_N\) is a fixed primitive \(N\)-th root of 1.
Need line bundle \mathcal{L}:
Pick \mathcal{L} whose sections are modular forms of weight 2.

Need points P_1, \cdots, P_n to evaluate forms at:
Fix (E, α), take the

$$(E, \alpha \circ \gamma)$$

for $\gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})/\pm 1$.

Still need to “evaluate” a basis of the space of forms of weight 2 at the P_i...
Let \(k \in \mathbb{N} \), and \(R \) a commutative ring such that \(6N \in R^\times \).
Let $k \in \mathbb{N}$, and R a commutative ring such that $6N \in R^\times$.

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to isomorphism classes of triples $(E/R, \alpha, \omega)$ where ω generates the differential forms on E/R.
Let $k \in \mathbb{N}$, and R a commutative ring such that $6N \in R^\times$.

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to isomorphism classes of triples $(E/R, \alpha, \omega)$ where ω generates the differential forms on E/R, and such that

$$f(E, \alpha, u\omega) = u^{-k}f(E, \alpha, \omega)$$

for all $u \in R^\times$.

Nicolas Mascot

\textit{p}-adic computation of Galois representations
An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E/R, \alpha, \omega)$, such that

$$f(E, \alpha, u\omega) = u^{-k}f(E, \alpha, \omega)$$

for all $u \in R^\times$.
Definition

An algebraic modular form of weight \(k \) for \(X(N) \) over \(R \) is a rule \(f \) assigning a value to triples \((E/R, \alpha, \omega) \), such that

\[
f(E, \alpha, u\omega) = u^{-k}f(E, \alpha, \omega)
\]

for all \(u \in R^\times \).

Short Weierstrass

\[
(E) : \ y^2 = x^3 + Ax + B
\]

\(\sim \omega = dx/2y \).
An **algebraic modular form** of weight \(k \) for \(X(N) \) over \(R \) is a rule \(f \) assigning a value to triples \((E/R, \alpha, \omega)\), such that

\[
f(E, \alpha, u\omega) = u^{-k}f(E, \alpha, \omega)
\]

for all \(u \in R^\times \).

Short Weierstrass

\[
(E) : \quad y^2 = x^3 + Ax + B
\]

\[\mapsto \omega = dx/2y.
\]

Isomorphic to

\[
(E') : \quad y^2 = x^3 + A'x + B'
\]

by \((x, y) \mapsto (u^2x, u^3y), A' = u^4A, B' = u^6B, \omega' = u^{-1}\omega\).
Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to pairs $(\mathcal{E}/R, \alpha)$, such that

$$f(\mathcal{E}', \alpha) = u^k f(\mathcal{E}, \alpha)$$

for all $u \in R^\times$.

Short Weierstrass

$$(\mathcal{E}) : \quad y^2 = x^3 + Ax + B$$

$$\sim \omega = dx/2y.$$

Isomorphic to

$$(\mathcal{E}') : \quad y^2 = x^3 + A'x + B'$$

by $(x, y) \mapsto (u^2x, u^3y)$, $A' = u^4 A$, $B' = u^6 B$, $\omega' = u^{-1} \omega$.
Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to pairs $(\mathcal{E}/R, \alpha)$, such that

$$f(\mathcal{E}', \alpha) = u^k f(\mathcal{E}, \alpha)$$

for all $u \in R^\times$.

Examples

$\mathcal{E} \mapsto A$ is a modular form of weight 4.

$\mathcal{E} \mapsto \Delta := -64A^3 - 432B^2$ is a modular form of weight 12.

by $(x, y) \mapsto (u^2x, u^3y)$, $A' = u^4A$, $B' = u^6B$, $\omega' = u^{-1}\omega$.
Makdisi’s moduli-friendly forms

\[\alpha : (\mathbb{Z}/N\mathbb{Z})^2 \cong \mathcal{E}[N] \]

For \(v, w \in (\mathbb{Z}/N\mathbb{Z})^2 \) such that \(v, w, v + w \) are all nonzero, let

\[\lambda_{v,w} : (\mathcal{E}, \alpha) \rightsquigarrow \text{slope of line joining } \alpha(v) \text{ to } \alpha(w). \]
Makdisi’s moduli-friendly forms

\[\alpha : (\mathbb{Z}/N\mathbb{Z})^2 \cong \mathcal{E}[N] \]

For \(v, w \in (\mathbb{Z}/N\mathbb{Z})^2 \) such that \(v, w, v + w \) are all nonzero, let

\[\lambda_{v,w} : (\mathcal{E}, \alpha) \mapsto \text{slope of line joining } \alpha(v) \text{ to } \alpha(w). \]

Theorem (Makdisi, 2011)

1. \(\lambda_{v,w} \) is a modular form of weight 1 for \(X(N) \).
Makdisi’s moduli-friendly forms

$$\alpha : (\mathbb{Z}/N\mathbb{Z})^2 \cong \mathcal{E}[N]$$

For \(v, w \in (\mathbb{Z}/N\mathbb{Z})^2\) such that \(v, w, v + w\) are all nonzero, let

$$\lambda_{v,w} : (\mathcal{E}, \alpha) \mapsto \text{slope of line joining } \alpha(v) \text{ to } \alpha(w).$$

Theorem (Makdisi, 2011)

1. \(\lambda_{v,w}\) is a modular form of weight 1 for \(X(N)\).
2. The \(R\)-algebra generated by the \(\lambda_{v,w}\) contains all modular forms for \(X(N)\), except cuspforms of weight 1.
Makdisi’s moduli-friendly forms

\[\alpha : (\mathbb{Z}/N\mathbb{Z})^2 \cong \mathcal{E}[N] \]

For \(v, w \in (\mathbb{Z}/N\mathbb{Z})^2 \) such that \(v, w, v + w \) are all nonzero, let

\[\lambda_{v,w} : (\mathcal{E}, \alpha) \mapsto \text{slope of line joining } \alpha(v) \text{ to } \alpha(w). \]

Theorem (Makdisi, 2011)

1. \(\lambda_{v,w} \) is a modular form of weight 1 for \(X(N) \).
2. The \(R \)-algebra generated by the \(\lambda_{v,w} \) contains all modular forms for \(X(N) \), except cuspforms of weight 1.
3. The \(\lambda_{v,w} \) are moduli-friendly!
Makdisi’s moduli-friendly forms

\[\alpha : (\mathbb{Z}/N\mathbb{Z})^2 \cong \mathcal{E}[N] \]

For \(v, w \in (\mathbb{Z}/N\mathbb{Z})^2\) such that \(v, w, v + w\) are all nonzero, let

\[\lambda_{v,w} : (\mathcal{E}, \alpha) \mapsto \text{slope of line joining } \alpha(v) \text{ to } \alpha(w). \]

Theorem (Makdisi, 2011)

1. \(\lambda_{v,w}\) is a modular form of weight 1 for \(X(N)\).
2. The \(R\)-algebra generated by the \(\lambda_{v,w}\) contains all modular forms for \(X(N)\), except cuspforms of weight 1.
3. The \(\lambda_{v,w}\) are moduli-friendly!

\[\implies\] We can compute in the Jacobian of \(X(N)\) without equations nor \(q\)-expansions, just by looking at \(\mathcal{E}[N]\) for one \(\mathcal{E}\)!
Example 1

Let

\[f = q + (-i - 1)q^2 + (i - 1)q^3 + O(q^4) \in S_2(\Gamma_1(16)) \]

and

\[I = (5, i - 2). \]

We catch \(\rho_f,I \) in the 5-torsion of the Jacobian of \(X_1(16) \) (genus 2).

\[
S = mfini([16,2,0],1);
f = mfeigenbasis(S[1])[1];
R = mfgalrep(f,[5,[[2,2]]],[30,50],5)
factor(projgalrep(R)[1])
\]
Example 2

Let

\[f = \Delta = q - 24q^2 + 252q^3 + O(q^4) \in S_{12}(\Gamma_1(1)) \]

and

\[l = 17. \]

We catch \(\rho_{f,l} \) in the 17-torsion of the Jacobian of \(X_1(17) \) (genus 5).

\[
\begin{align*}
f &= \text{mfDelta}(); \\
R &= \text{mfgalrep}(f,17,100,200) \\
F &= \text{polredbest}(ext{projgalrep}(R)[1]) \\
factor(nfdisc(F))
\end{align*}
\]