Es=ellinit([a4,a6]); El=ellinit([a1,a2,a3,a4,a6]); Es.c4 Es.c6 Es.disc Es.j E = ellinit([0,1,1,-2,0]); E.j E.disc N = ellglobalred(E)[1] tor = elltors(E) \\ trivial ellratpoints(E,10) R = ellrank(E) G = ellsaturation(E,R[4],1000) elladd(E,G[1],G[2]) ellmul(E,G[1],3) lfunparams(E) lfunan(E,20) lfunrootres(E) ellrootno(E) lfunorderzero(E) lfun(E,1,2) ellanalyticrank(E) tam = elltamagawa(E) bsd = E.omega[1]*tam ellbsd(E) reg = matdet(ellheightmatrix(E,G)) bsd * reg lfun(E,1,2)/2! E=ellinit(ellfromj(3)); E[1..5] ellglobalred(E)[1] E.disc Em = ellminimalmodel(E); Em[1..5] Em.disc t = ellminimaltwist(E) Et = elltwist(E,t); Et[1..5] Et = ellminimalmodel(Et); Et[1..5] ellglobalred(Et)[1] Et.disc E=ellinit([0,1,1,-7,5]); lfunorderzero(E) P = ellheegner(E) elltors(E) ellisoncurve(E,P) [L,M] = ellisomat(E); M \\ isogeny matrix [e2,iso2,isod2]=L[2] E2 = ellinit(e2); P2 = ellisogenyapply(iso2,P) ellisoncurve(E2,P2) ellheight(E2,P2)/ellheight(E,P) Q=ellisogenyapply(isod2,P2) ellmul(E,P,3) E=ellinit("11a1"); ellglobalred(E)[1] E=ellinit([3,4]); ellidentify(E) ellconvertname("1440i1") ellsearch(27) forell(e,1,10000,if(#e[3]==3,return(e))) E3 = ellinit("5077a1"); ellgenerators(E3) ellrank(E3) E = ellinit("990h1"); [L,M] = ellweilcurve(E); vector(#L,i,[ellidentify(L[i])[1][1],M[i]]) E = ellinit("11a1"); E2 = ellinit("11a2"); E3 = ellinit("11a3"); Et = elltwist(E,-7); E2t = elltwist(E2,-7); E3t = elltwist(E3,-7); F = intformal(Polrev(ellan(E,1000))); h = (-13+sqrt(-7))/22; z = 2*real(subst(F,x,exp(2*I*Pi*h))/sqrt(-7)) ellztopoint(Et,z) ellztopoint(E2t,z) ellztopoint(E3t,z) ellztopoint(E3t,z*5) ellmaninconstant(E) ellmaninconstant(E2) ellmaninconstant(E3) E = ellinit("59097a4"); c = ellmaninconstant(E,1); \\ faster d = ellmoddegree(E) d*c^2 ellheight(E) \\ Falting height nf = nfinit(a^2-5); phi = (1+a)/2; E = ellinit([1,phi+1,phi,phi,0],nf); E.j E.disc N = ellglobalred(E)[1] tor = elltors(E) \\ Z/8Z idealhnf(E.nf,E.disc) ellminimaldisc(E) F = elltwist(E,5); lift(F[1..5]) idealhnf(F.nf,F.disc) ellminimaldisc(F) Fm = ellminimalmodel(ellinit(F,bnfinit(F.nf))); lift(Fm[1..5]) [pr1, pr2] = idealprimedec(nf,31); elllocalred(E,pr1) \\ multiplicative reduction ellap(E,pr1) \\ -1: non-split elllocalred(E,pr2) \\ good reduction E2 = ellinit(E, pr2); \\ reduction of E mod pr2 E2.j ellap(E2) ellgroup(E2) \\ Z/24Z per = E.omega[1][1]*E.omega[2][1]; tam = elltamagawa(E) bsd = (per*tam) / (tor[1]^2*sqrt(abs(nf.disc))) ellbsd(E) L1 = lfun(E,1) ellrootno(E) ellisomat(E,,1)[2] C = polclass(-23,,a) E = ellinit(ellfromj(a), nfinit(C)); ellisomat(E)[2] elliscm(E) [P,j] = polcompositum(C, a^2+23, 1)[1]; E = ellinit(ellfromj(j), nfinit(P)); elliscm(E) ellisomat(E)