bnf = bnfinit(x^3-11); bnf.pol bnf.cyc bnf.reg bnf.fu bnf = bnfinit(x^3+1048583,1); sizebyte(bnf.fu) bnfunits(bnf) sizebyte(bnfunits(bnf)) bnfsignunit(bnf) bnf = bnfinit(x^3-17); bnfunits(bnf) bnfunits(bnf)[1] id = idealprimedec(bnf,2); bnfunits(bnf,id)[1] quadclassunit(1-2^127) quadclassunit(1-2^127) \g1bnf bnf = bnfinit(x^3+nextprime(2^52)); \g0bnf bnf = bnfinit(a^2-a+50,1); bnf.cyc R = bnrclassfield(bnf)[1] [cond,bnr,subg] = rnfconductor(bnf,R); cond subg R2 = bnrclassfield(bnf,,2) bnr = bnrinit(bnf,12); bnr.cyc [deg,r1,D] = bnrdisc(bnr); [deg,r1] D bnrclassfield(bnr) bnrclassfield(bnr,,1) bnr = bnrinit(bnf,7); bnr.cyc bnrclassfield(bnr,3) \\elementary 3-subextension pr41 = idealprimedec(bnf,41)[1]; bnrisprincipal(bnr,pr41,0) bnr = bnrinit(bnf,[102709,43512;0,1]); bnr.cyc bnrclassfield(bnr,[9,3;0,1]) \\subgroup of index 9 bnf=bnfinit(a^2-217,1); bnf.cyc bnrinit(bnf,1).cyc bnrinit(bnf,[1,[1,1]]).cyc bnr = bnrinit(bnf,271*379,,3); bnr.cyc bnrclassfield(bnr) S = [s|s<-subgrouplist(bnr,,1),matdet(s)==3]; L = [bnrclassfield(bnr,s,1)|s<-S]; L == bnrclassfield(bnr,S,1)