

Poincaré à la Makdisi

Nicolas Mascot

Trinity College Dublin

2026 PARI/GP workshop
13 January 2026

The Poincaré torsor

Line bundles and torsors

Let X be a variety over a field K ,
and let $\mathcal{L} \rightarrow X$ be a line bundle.

Line bundles and torsors

Let X be a variety over a field K ,
and let $\mathcal{L} \rightarrow X$ be a line bundle.

We write \mathcal{L}^\times for \mathcal{L} with the 0 section removed.

Line bundles and torsors

Let X be a variety over a field K ,
and let $\mathcal{L} \rightarrow X$ be a line bundle.

We write \mathcal{L}^\times for \mathcal{L} with the 0 section removed.

The fibres of \mathcal{L}^\times are torsors under \mathbb{G}_m (free and transitive action of K^\times).

Enters Poincaré

Now let A be an Abelian variety over K .
Its dual is

$$A^\vee = \text{Pic}^0(A) = \{\text{line bundles } \mathcal{L} \rightarrow A \mid \deg \mathcal{L} = 0\} / \simeq .$$

The Poincaré bundle on A is the unique line bundle

$$\mathcal{P} \longrightarrow A \times A^\vee$$

such that

- for all $y = [\mathcal{L}] \in A^\vee$, $\mathcal{P}|_{A \times \{y\}} \simeq \mathcal{L}$,
- and $\mathcal{P}|_{0 \times A^\vee} \simeq \mathcal{O}_{A^\vee}$ is trivial.

The Poincaré torsor on A is \mathcal{P}^\times .

What this means for Jacobians

Let C be a “nice” curve over K .

Its Jacobian is

$$\begin{aligned} J &\stackrel{\text{def}}{=} \text{Pic}^0(C) \\ &\stackrel{\text{def}}{=} \{\text{line bundles } \mathcal{L} \rightarrow C \mid \deg \mathcal{L} = 0\} / \simeq \\ &\stackrel{\mathcal{O}_C(D) \leftrightarrow D}{=} \{\text{divisors } D/C \mid \deg D = 0\} / \sim. \end{aligned}$$

What this means for Jacobians

Let C be a “nice” curve over K .

Its Jacobian is

$$\begin{aligned} J &\stackrel{\text{def}}{=} \text{Pic}^0(C) \\ &\stackrel{\text{def}}{=} \{\text{line bundles } \mathcal{L} \rightarrow C \mid \deg \mathcal{L} = 0\} / \simeq \\ &\stackrel{\mathcal{O}_C(D) \leftrightarrow D}{=} \{\text{divisors } D/C \mid \deg D = 0\} / \sim . \end{aligned}$$

It is an Abelian variety, with group law induced by tensor product of line bundles / addition of divisors.

What this means for Jacobians

Let C be a “nice” curve over K .

Its Jacobian is

$$\begin{aligned} J &\stackrel{\text{def}}{=} \text{Pic}^0(C) \\ &\stackrel{\text{def}}{=} \{\text{line bundles } \mathcal{L} \rightarrow C \mid \deg \mathcal{L} = 0\} / \simeq \\ &\stackrel{\mathcal{O}_C(D) \leftrightarrow D}{=} \{\text{divisors } D/C \mid \deg D = 0\} / \sim. \end{aligned}$$

It is an Abelian variety, with group law induced by tensor product of line bundles / addition of divisors.

Furthermore, it is self-dual: $J^\vee \simeq J$.

What this means for Jacobians

Let C be a “nice” curve over K .

Its Jacobian is

$$\begin{aligned} J &\stackrel{\text{def}}{=} \text{Pic}^0(C) \\ &\stackrel{\text{def}}{=} \{\text{line bundles } \mathcal{L} \rightarrow C \mid \deg \mathcal{L} = 0\} / \simeq \\ &\stackrel{\mathcal{O}_C(D) \leftarrow D}{=} \{\text{divisors } D/C \mid \deg D = 0\} / \sim. \end{aligned}$$

It is an Abelian variety, with group law induced by tensor product of line bundles / addition of divisors.

Furthermore, it is self-dual: $J^\vee \simeq J$.

Theorem

Let $x = [D]$ and $y = [E] \in J$.

The stalk of \mathcal{P} at $(x, y) \in J \times J$ is

$$\mathcal{P}_{x,y} \simeq \mathcal{N}_D(\mathcal{O}_C(E)).$$

What this means for Jacobians

Theorem

Let $x = [D]$ and $y = [E] \in J$.

The stalk of \mathcal{P} at $(x, y) \in J \times J$ is

$$\mathcal{P}_{x,y} \simeq \mathcal{N}_D(\mathcal{O}_C(E)).$$

Here $\mathcal{N}_D(f) \stackrel{\text{def}}{=} f(D) \stackrel{\text{def}}{=} \prod_i f(P_i)^{n_i}$ where $D = \sum_i n_i P_i$.

What this means for Jacobians

Theorem

Let $x = [D]$ and $y = [E] \in J$.

The stalk of \mathcal{P} at $(x, y) \in J \times J$ is

$$\mathcal{P}_{x,y} \simeq \mathcal{N}_D(\mathcal{O}_C(E)).$$

Here $\mathcal{N}_D(f) \stackrel{\text{def}}{=} f(D) \stackrel{\text{def}}{=} \prod_i f(P_i)^{n_i}$ where $D = \sum_i n_i P_i$.

Thus if $D \not\sim E$, then the meromorphic section 1 of $\mathcal{O}_C(E)$ is regular and nonvanishing along D , so

$$\mathcal{N}_D(1 \in \mathcal{O}_C(E)) \in \mathcal{P}_{x,y}^\times,$$

and

$$\mathcal{P}_{x,y}^\times = \left\{ \lambda \cdot \mathcal{N}_D(1 \in \mathcal{O}_C(E)) \mid \lambda \in K^\times \right\}.$$

Partial group laws

We have partial group laws

$$\mathcal{P}_{x_1,y}^{\times} \otimes \mathcal{P}_{x_2,y}^{\times} \longrightarrow \mathcal{P}_{x_1+x_2,y}^{\times} \quad \text{and} \quad \mathcal{P}_{x,y_1}^{\times} \otimes \mathcal{P}_{x,y_2}^{\times} \longrightarrow \mathcal{P}_{x,y_1+y_2}^{\times}$$

coming from

$$\mathcal{N}_{D_1}(\mathcal{O}_C(E)) \otimes \mathcal{N}_{D_2}(\mathcal{O}_C(E)) \simeq \mathcal{N}_{D_1+D_2}(\mathcal{O}_C(E)),$$

$$\mathcal{N}_D(\mathcal{O}_C(E_1)) \otimes \mathcal{N}_D(\mathcal{O}_C(E_2)) \simeq \mathcal{N}_D(\mathcal{O}_C(E_1 + E_2)).$$

Application: Quadratic Chabauty

Classical Chabauty

Let C be a “nice” curve of genus g over \mathbb{Q} .

Theorem (Faltings)

If $g \geq 2$, then $C(\mathbb{Q})$ is finite.

Classical Chabauty

Let C be a “nice” curve of genus g over \mathbb{Q} .

Theorem (Faltings)

If $g \geq 2$, then $C(\mathbb{Q})$ is finite.

Theorem (Mordell-Weil)

$J(\mathbb{Q}) \simeq \mathbb{Z}^r \times \text{finite group.}$

Classical Chabauty

Let C be a “nice” curve of genus g over \mathbb{Q} .
Suppose we know $P_0 \in C(\mathbb{Q})$. Then

$$j : \begin{array}{ccc} C & \longrightarrow & J \\ P & \longmapsto & [P - P_0] \end{array},$$

is an embedding (assuming $g \neq 0$).

Classical Chabauty

Let C be a “nice” curve of genus g over \mathbb{Q} .
Suppose we know $P_0 \in C(\mathbb{Q})$. Then

$$j : \begin{array}{ccc} C & \longrightarrow & J \\ P & \longmapsto & [P - P_0] \end{array},$$

is an embedding (assuming $g \neq 0$).

Idea (Chabauty)

Fix a Chabauty prime $p \in \mathbb{N}$; catch $C(\mathbb{Q})$ inside

$$\underbrace{C(\mathbb{Q}_p)}_{\dim 1} \cap \underbrace{\overline{J(\mathbb{Q})}}_{\dim \leq r}^{p\text{-adic}} \subset \underbrace{J(\mathbb{Q}_p)}_{\dim g}.$$

Classical Chabauty

Let C be a “nice” curve of genus g over \mathbb{Q} .
Suppose we know $P_0 \in C(\mathbb{Q})$. Then

$$j : \begin{array}{ccc} C & \longrightarrow & J \\ P & \longmapsto & [P - P_0] \end{array},$$

is an embedding (assuming $g \neq 0$).

Idea (Chabauty)

Fix a Chabauty prime $p \in \mathbb{N}$; catch $C(\mathbb{Q})$ inside

$$\underbrace{C(\mathbb{Q}_p)}_{\dim 1} \cap \underbrace{\overline{J(\mathbb{Q})}}_{\dim \leq r}^{p\text{-adic}} \subset \underbrace{J(\mathbb{Q}_p)}_{\dim g}.$$

But what if $r \geq g$? Then $J(\mathbb{Q})$ could be dense in $J(\mathbb{Q}_p)$. . .

Quadratic Chabauty

Try to gain a dimension by lifting j : $\begin{array}{ccc} C & \hookrightarrow & J \\ P & \mapsto & [P - P_0] \end{array}$ to \mathcal{P}^\times :

$$\begin{array}{ccccc} & & \mathcal{P}^\times & & \\ & \nearrow \widetilde{j} & \downarrow & & \\ C & \xrightarrow{j} & J & \xrightarrow{(\text{Id}, h)} & J \times J \\ & & & & (h \in \text{End}(J)) \end{array}$$

Quadratic Chabauty

Try to gain a dimension by lifting j : $\begin{array}{ccc} C & \hookrightarrow & J \\ P & \mapsto & [P - P_0] \end{array}$ to \mathcal{P}^\times :

$$\begin{array}{ccccc} & & \mathcal{P}^\times & & \\ & \nearrow \widetilde{j} & \downarrow & & \\ C & \xrightarrow{j} & J & \xrightarrow{(\text{Id}, h)} & J \times J \\ & & & & (h \in \text{End}(J)) \end{array}$$

We now try to catch $C(\mathbb{Q})$ inside

$$C(\mathbb{Q}_p) \cap \underbrace{\mathcal{P}^\times(\mathbb{Q})}_{p\text{-adic}} \subset \mathcal{P}^\times(\mathbb{Q}_p).$$

Unfortunately, \mathbb{Q}^\times dense in \mathbb{Q}_p^\times , so $\mathcal{P}^\times(\mathbb{Q})$ dense in $\mathcal{P}^\times(\mathbb{Q}_p)$ whenever $J(\mathbb{Q})$ dense in $J(\mathbb{Q}_p)$...

Quadratic Chabauty

Try to gain a dimension by lifting $j : C \hookrightarrow J$ to \mathcal{P}^\times :
 $P \mapsto [P - P_0]$

Let \mathcal{C}/\mathbb{Z} be a proper model of C/\mathbb{Q} , so that $\mathcal{C}(\mathbb{Z}) = C(\mathbb{Q})$,
and let \mathcal{J} be the Néron model of J :

$$\begin{array}{ccccc} & & \mathcal{P}^\times & & \\ & \nearrow \widetilde{j} & \downarrow & & \\ \mathcal{C} & \xrightarrow{j} & \mathcal{J} & \xrightarrow{(\text{Id}, h)} & \mathcal{J} \times \mathcal{J} \\ & & & & (h \in \text{End}(J)) \end{array}$$

Quadratic Chabauty

Try to gain a dimension by lifting $j : \begin{matrix} C & \hookrightarrow & J \\ P & \mapsto & [P - P_0] \end{matrix}$ to \mathcal{P}^\times :

Let \mathcal{C}/\mathbb{Z} be a proper model of C/\mathbb{Q} , so that $\mathcal{C}(\mathbb{Z}) = C(\mathbb{Q})$, and let \mathcal{J} be the Néron model of J :

$$\begin{array}{ccccc} & & \mathcal{P}^\times & & \\ & \nearrow \widetilde{j} & \downarrow & & \\ \mathcal{C} & \xrightarrow{j} & \mathcal{J} & \xrightarrow{(\text{Id}, h)} & \mathcal{J} \times \mathcal{J} \\ & & & & (h \in \text{End}(J)) \end{array}$$

Since $\mathbb{G}_m(\mathbb{Z}) = \mathbb{Z}^\times = \{\pm 1\}$ is finite, we know the possible \mathbb{G}_m -components of $\widetilde{j}(\mathcal{C}(\mathbb{Z}))$.

Implementing J and \mathcal{P}^\times

Makdisi's framework

Let C/K be a “nice” curve of genus g .

Assume $C(K)$ large (e.g. $K = \mathbb{C}$ or \mathbb{Q}_p , or extend K).

Pick line bundle $\mathcal{L} \rightarrow C$ of degree $d_0 = \deg \mathcal{L} \gg_g 0$,
and fix points $Q_1, \dots, Q_m \in C(K)$ ($m \gg_{d_0} 0$).

Write $V_n =$ global sections of $\mathcal{L}^{\otimes n}$ ($n = 1, 2, \dots, 5$).

Each $0 \neq s \in V_n$ has divisor $(s)_n$, effective of degree $n \cdot d_0$.

More generally, when D is an effective divisor, write

$V_n(-D) \subset V_n$ for the sections of $\mathcal{L}^{\otimes n}(-D)$.

Embed the V_n into K^m by $s \mapsto (s(Q_1), \dots, s(Q_m))$.

Each point $x \in J$ is of the form $x = [\mathcal{L}(-D)]$ for some
effective divisor D of degree d_0 , and is represented by

$V_2(-D) \stackrel{\text{def}}{=} \text{sections of } \mathcal{L}^{\otimes 2}(-D) \subset V_2 \subset K^m$.

Makdisi's framework

Pick line bundle $\mathcal{L} \rightarrow C$ of degree $d_0 = \deg \mathcal{L} \gg_g 0$,
and fix points $Q_1, \dots, Q_m \in C(K)$ ($m \gg_{d_0} 0$).

Write $V_n =$ global sections of $\mathcal{L}^{\otimes n}$ ($n = 1, 2, \dots, 5$).

Each $0 \neq s \in V_n$ has divisor $(s)_n$, effective of degree $n \cdot d_0$.

More generally, when D is an effective divisor, write

$V_n(-D) \subset V_n$ for the sections of $\mathcal{L}^{\otimes n}(-D)$.

Embed the V_n into K^m by $s \mapsto (s(Q_1), \dots, s(Q_m))$.

Each point $x \in J$ is of the form $x = [\mathcal{L}(-D)]$ for some effective divisor D of degree d_0 , and is represented by

$V_2(-D) \stackrel{\text{def}}{=} \text{sections of } \mathcal{L}^{\otimes 2}(-D) \subset V_2 \subset K^m$.

In particular, $0 \in J$ is represented by $s \cdot V_1 \subset V_2$
for any $0 \neq s \in V_1$, corresponding to $D = (s)_1$.

Equality test

Algorithm (Makdisi's equality test)

Given $V_2(-D)$ and $V_2(-D')$ representing $x = [\mathcal{L}(-D)]$ and $y = [\mathcal{L}(-D')] \in J$,

- ① Pick $0 \neq u \in V_2(-D) \rightsquigarrow (u)_2 = D + E$.
- ② Compute $u \cdot V_2(-D') = V_4(-D - D' - E)$.
- ③ Compute

$$W = V_2(-D' - E) = \{v \in V_2 \mid v \cdot V_2(-D) \subset u \cdot V_2(-D')\}.$$

- If $x = y$, then $W = K \cdot u'$ where $D + (u')_2 = D' + (u)_2$.
- If $x \neq y$, then $W = \{0\}$.

Note: the “linear equivalence certificate” $u/u' \in K(C)$ is randomised.

Representing $\mathcal{P}_{x,y}^\times$

Let $x = [\mathcal{L}(-D)]$ and $y = [\mathcal{L}(-E)] \in J$. What is $\mathcal{P}_{x,y}^\times$?

Representing $\mathcal{P}_{x,y}^\times$

Let $x = [\mathcal{L}(-D)]$ and $y = [\mathcal{L}(-E)] \in J$. What is $\mathcal{P}_{x,y}^\times$?

Fix $s_0 \in V_1$, and let $D_0 \stackrel{\text{def}}{=} (s_0)_1$.

Then $\mathcal{L} \simeq \mathcal{O}_C(D_0) \rightsquigarrow x = [D - D_0]$, $y = [E - D_0]$.

Unfortunately, $D - D_0$ and $E - D_0$ intersect,
so $\mathcal{N}_{D-D_0}(1 \in \mathcal{O}_C(E - D_0))$ is not a valid element of $\mathcal{P}_{x,y}^\times$.

Representing $\mathcal{P}_{x,y}^\times$

Let $x = [\mathcal{L}(-D)]$ and $y = [\mathcal{L}(-E)] \in J$. What is $\mathcal{P}_{x,y}^\times$?

Fix $s_0 \in V_1$, and let $D_0 \stackrel{\text{def}}{=} (s_0)_1$.

Then $\mathcal{L} \simeq \mathcal{O}_C(D_0) \rightsquigarrow x = [D - D_0]$, $y = [E - D_0]$.

Unfortunately, $D - D_0$ and $E - D_0$ intersect,
so $\mathcal{N}_{D-D_0}(1 \in \mathcal{O}_C(E - D_0))$ is not a valid element of $\mathcal{P}_{x,y}^\times$.

Solution: fix another $t_0 \in V_1$, such that $E_0 \stackrel{\text{def}}{=} (t_0)_1 \not\sim D_0$.

If $D \not\sim E_0$, $E \not\sim D_0$, and $D \not\sim E$, then

$$[D, E] \stackrel{\text{def}}{=} \mathcal{N}_{D-D_0}(1 \in \mathcal{O}_C(E - E_0)) \in \mathcal{P}_{x,y}^\times,$$

and $\mathcal{P}_{x,y}^\times = \{\lambda \cdot [D, E] \mid \lambda \in K^\times\}$.

\rightsquigarrow We can use $[D, E]$ as a reference point for $\mathcal{P}_{x,y}^\times$.

Representing $\mathcal{P}_{x,y}^\times$

Fix $s_0 \in V_1$, and let $D_0 \stackrel{\text{def}}{=} (s_0)_1$.

Then $\mathcal{L} \simeq \mathcal{O}_C(D_0) \rightsquigarrow x = [D - D_0]$, $y = [E - D_0]$.

Solution: fix another $t_0 \in V_1$, such that $E_0 \stackrel{\text{def}}{=} (t_0)_1 \not\sim D_0$.

If $D \not\sim E_0$, $E \not\sim D_0$, and $D \not\sim E$, then

$$[D, E] \stackrel{\text{def}}{=} \mathcal{N}_{D-D_0}(1 \in \mathcal{O}_C(E - E_0)) \in \mathcal{P}_{x,y}^\times,$$

and $\mathcal{P}_{x,y}^\times = \{\lambda \cdot [D, E] \mid \lambda \in K^\times\}$.

\rightsquigarrow We can use $[D, E]$ as a reference point for $\mathcal{P}_{x,y}^\times$.

However, it depends on the choice of effective divisors D , E such that $x = [\mathcal{L}(-D)]$ and $y = [\mathcal{L}(-E)] \dots$

Comparison formula

Algorithm (Comparison in \mathcal{P}^\times)

Given 4 points $x_1 = [\mathcal{L}(-D_1)]$, $y_1 = [\mathcal{L}(-E_1)]$,
 $x_2 = [\mathcal{L}(-D_2)]$, $y_2 = [\mathcal{L}(-E_2)]$ of J ,
we want to compare $[D_1, E_1]$ with $[D_2, E_2]$.

- ① Use Makdisi's equality test to check $x_1 = x_2$ and $y_1 = y_2$.
If not, complain / terminate.
Otherwise, we get $d_1, d_2, e_1, e_2 \in V_2$ such that
 $D_1 + (d_1)_2 = D_2 + (d_2)_2$ and $E_1 + (e_1)_2 = E_2 + (e_2)_2$.
- ② Output that $[D_2, E_2] = \lambda \cdot [D_1, E_1]$, where

$$\lambda = \frac{\mathcal{N}_{E_2}(d_1/d_2) \mathcal{N}_{D_0}(e_1/e_2)}{\mathcal{N}_{E_0}(d_1/d_2) \mathcal{N}_{D_1}(e_1/e_2)} = \frac{\mathcal{N}_{E_1}(d_1/d_2) \mathcal{N}_{D_0}(e_1/e_2)}{\mathcal{N}_{E_0}(d_1/d_2) \mathcal{N}_{D_2}(e_1/e_2)}.$$

Notes: $V_2(-D_0) = s_0 \cdot V_1$, and $V_2(-E_0) = t_0 \cdot V_1$.

May need to run several times until the norms work.

Evaluating norms

Given $V_2(-D)$ encoding effective $D = \sum_i n_i P_i$, and columns in K^m representing $u, v \in V_2$ not vanishing at the P_i , want to evaluate

$$\mathcal{N}_D(u/v) = \prod_i \frac{u}{v} (P_i)^{n_i} \in K^\times.$$

Algorithm (Norm)

- ① Compute $V_4(-D) = V_2 \cdot V_2(-D)$.
- ② Find supplements $V_2 = S \oplus V_2(-D)$ and $V_4 = T \oplus V_4(-D)$.
- ③ Compute $\Delta_u = \det(S \hookrightarrow V_2 \xrightarrow{u} V_4 \twoheadrightarrow T)$ and Δ_v .
- ④ Output $\mathcal{N}_D(u/v) = \Delta_u / \Delta_v$.

Explanation: $V(-D) = \text{Ker} (s \mapsto s(D))$.

Summary

- We fix once and for all $\mathcal{L} \gg 0 \rightarrow C$,
and then two sections s_0, t_0 of \mathcal{L} such that

$$D_0 \stackrel{\text{def}}{=} (s_0)_1 \quad \not\sim \quad E_0 \stackrel{\text{def}}{=} (t_0)_1.$$

- Given $x, y \in J$, choose effective divisors D, E such that

$$x = [\mathcal{L}(-D)], \quad y = [\mathcal{L}(-E)] \quad \text{and} \quad D \not\sim E_0, \quad E \not\sim D_0, \quad D \not\sim E,$$

and represent them by

$$V_2(-D), \quad V_2(-E) \quad \subset V_2 = \text{sections of } \mathcal{L}^{\otimes 2}.$$

- Then $[D, E] \stackrel{\text{def}}{=} \mathcal{N}_{D-D_0}(1 \in \mathcal{O}_C(E - E_0)) \in \mathcal{P}_{x,y}^{\times}$,
so we represent $\lambda \cdot [D, E] \in \mathcal{P}_{x,y}^{\times}$ by the triple

$$(\quad V_2(-D) \quad , \quad V_2(-E) \quad , \quad \lambda \quad)$$

(where $\lambda \in K^{\times}$).

Group law in J

Algorithm (Makdisi's addflip)

Given $V_2(-D_1)$ and $V_2(-D_2)$

representing $x_1 = [\mathcal{L}(-D_1)]$ and $x_2 = [\mathcal{L}(-D_2)] \in J$,

compute $V_2(-D_3)$ representing $x_3 = [\mathcal{L}(-D_3)]$
such that $x_1 + x_2 + x_3 = 0 \in J$.

- ① Compute $V_4(-D_1 - D_2) = V_2(-D_1) \cdot V_2(-D_2)$.
- ② Compute $V_3(-D_1 - D_2) = \{v \in V_3 \mid v \cdot V_1 \subset V_4(-D_1 - D_2)\}$.
- ③ Pick $0 \neq u \in V_3(-D_1 - D_2)$, so $(u)_3 = D_1 + D_2 + D_3$.
- ④ Compute $u \cdot V_2 = V_5(-D_1 - D_2 - D_3)$.
- ⑤ Compute $V_2(-D_3) = \{v \in V_2 \mid v \cdot V_3(-D_1 - D_2) \subset u \cdot V_2\}$.

Algorithm (Makdisi's negation)

Given $V_2(-D)$ representing $x = [\mathcal{L}(-D)] \in J$,
compute $V_2(-D')$ representing $x' = [\mathcal{L}(-D')] \in J$
such that $x + x' = 0 \in J$.

- ① Pick $0 \neq u \in V_2(-D)$, so that $(u)_2 = D + D'$.
- ② Compute $u \cdot V_2 = V_4(-D - D')$.
- ③ Compute $V_2(-D') = \{v \in V_2 \mid v \cdot V_2(-D) \subset u \cdot V_2\}$.

Partial group laws in \mathcal{P}^\times

Algorithm (Left partial group law in \mathcal{P}^\times)

Given 4 points of J

$x_1 = [\mathcal{L}(-D_1)]$, $y_1 = [\mathcal{L}(-E_1)]$, $x_2 = [\mathcal{L}(-D_2)]$, $y_2 = [\mathcal{L}(-E_2)]$
such that $y_1 = y_2 \stackrel{\text{def}}{=} y$,

want to apply $\mathcal{P}_{x_1, y}^\times \otimes \mathcal{P}_{x_2, y}^\times \rightarrow \mathcal{P}_{x_1 + x_2, y}^\times$ to $[D_1, E_1]$ and $[D_2, E_2]$.

- ① Find $\lambda \in K^\times$ such that $[D_2, E_2] = \lambda[D_2, E_1]$.
- ② Find $(V_2(-D_3), u)$ such that $(u)_3 = D_1 + D_2 + D_3$, and then $(V_2(-D_4), v)$ such that $(v)_2 = D_3 + D_4$.
- ③ Output $\lambda \cdot \mu \cdot [D_4, E_1]$, where $\mu = \mathcal{N}_{E_1} \left(\frac{u}{vs_0} \right) \Big/ \mathcal{N}_{E_0} \left(\frac{u}{vs_0} \right)$.

The right partial group law is similar.