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Line bundles and torsors

Let X be a variety over a field K ,
and let L −→ X be a line bundle.

We write L× for L with the 0 section removed.

The fibres of L× are torsors under Gm (free and transitive
action of K×).
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Enters Poincaré

Now let A be an Abelian variety over K .
Its dual is

A∨ = Pic0(A) = {line bundles L → A | degL = 0}/ ≃ .

The Poincaré bundle on A is the unique line bundle

P −→ A× A∨

such that

for all y = [L] ∈ A∨, P|A×{y} ≃ L,
and P|0×A∨ ≃ OA∨ is trivial.

The Poincaré torsor on A is P×.
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What this means for Jacobians

Let C be a “nice” curve over K .
Its Jacobian is

J
def
= Pic0(C )

def
= {line bundles L → C | degL = 0}/ ≃
=

OC (D)←[D
{divisors D/C | degD = 0}/ ∼ .

It is an Abelian variety, with group law induced by tensor
product of line bundles / addition of divisors.

Furthermore, it is self-dual: J∨ ≃ J .

Theorem

Let x = [D] and y = [E ] ∈ J.
The stalk of P at (x , y) ∈ J × J is

Px ,y ≃ ND

(
OC (E )

)
.

Here ND(f )
def
= f (D)

def
=

∏
i f (Pi)

ni where D =
∑

i niPi .

Thus if D��∩E , then the meromorphic section 1 of OC (E ) is
regular and nonvanishing along D, so

ND

(
1 ∈ OC (E )

)
∈ P×x ,y ,

and
P×x ,y =

{
λ · ND

(
1 ∈ OC (E )

) ∣∣ λ ∈ K×
}
.
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Partial group laws

We have partial group laws

P×x1,y ⊗ P×x2,y −→ P×x1+x2,y
and P×x ,y1 ⊗ P×x ,y2 −→ P×x ,y1+y2

coming from

ND1

(
OC (E )

)
⊗ND2

(
OC (E )

)
≃ ND1+D2

(
OC (E )

)
,

ND

(
OC (E1)

)
⊗ND

(
OC (E2)

)
≃ ND

(
OC (E1 + E2)

)
.
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Application:
Quadratic Chabauty
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Classical Chabauty

Let C be a “nice” curve of genus g over Q.

Theorem (Faltings)

If g ⩾ 2, then C (Q) is finite.

Theorem (Mordell-Weil)

J(Q) ≃ Zr × finite group.
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Classical Chabauty

Let C be a “nice” curve of genus g over Q.
Suppose we know P0 ∈ C (Q). Then

j :
C −→ J
P 7−→ [P − P0]

,

is an embedding (assuming g ̸= 0).

Idea (Chabauty)

Fix a Chabauty prime p ∈ N; catch C (Q) inside

C (Qp)︸ ︷︷ ︸
dim 1

∩ J(Q)
p-adic︸ ︷︷ ︸

dim⩽r

⊂ J(Qp)︸ ︷︷ ︸
dim g

.

But what if r ⩾ g? Then J(Q) could be dense in J(Qp) . . .
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Quadratic Chabauty

Try to gain a dimension by lifting j :
C ↪→ J
P 7→ [P − P0]

to P×:

P×

��
C

j̃

44

� �

j
// J �
�

(Id,h)
// J × J

(h ∈ End(J))

We now try to catch C (Q) inside

C (Qp) ∩ P×(Q)
p-adic︸ ︷︷ ︸ ⊂ P×(Qp).

Unfortunately, Q× dense in Q×p , so P×(Q) dense in P×(Qp)
whenever J(Q) dense in J(Qp) . . .
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Quadratic Chabauty

Try to gain a dimension by lifting j :
C ↪→ J
P 7→ [P − P0]

to P×:

Let C/Z be a proper model of C/Q, so that C(Z) = C (Q),
and let J be the Néron model of J :

P×

��
C

j̃

44

� �

j
// J � �

(Id,h)
// J × J

(h ∈ End(J))

Since Gm(Z) = Z× = {±1} is finite, we know the possible

Gm-components of j̃
(
C(Z)

)
.
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Implementing J and P×
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Makdisi’s framework

Let C/K be a “nice” curve of genus g .
Assume C (K ) large (e.g. K = C or Qp, or extend K ).

Pick line bundle L → C of degree d0 = degL ≫g 0,
and fix points Q1, · · · ,Qm ∈ C (K ) (m ≫d0 0).

Write Vn = global sections of L⊗n (n = 1, 2, · · · , 5).
Each 0 ̸= s ∈ Vn has divisor (s)n, effective of degree n · d0.

More generally, when D is an effective divisor, write
Vn(−D) ⊂ Vn for the sections of L⊗n(−D).

Embed the Vn into Km by s 7→
(
s(Q1), · · · , s(Qm)

)
.

Each point x ∈ J is of the form x = [L(−D)] for some
effective divisor D of degree d0, and is represented by

V2(−D)
def
= sections of L⊗2(−D) ⊂ V2 ⊂ Km.

In particular, 0 ∈ J is represented by s · V1 ⊂ V2

for any 0 ̸= s ∈ V1, corresponding to D = (s)1.
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Equality test

Algorithm (Makdisi’s equality test)

Given V2(−D) and V2(−D ′)
representing x = [L(−D)] and y = [L(−D ′)] ∈ J ,

1 Pick 0 ̸= u ∈ V2(−D) ⇝ (u)2 = D + E .

2 Compute u · V2(−D ′) = V4(−D − D ′ − E ).

3 Compute
W = V2(−D ′−E ) = {v ∈ V2 | v ·V2(−D) ⊂ u·V2(−D ′)}.

If x = y , then W = K · u′ where D + (u′)2 = D ′ + (u)2.

If x ̸= y , then W = {0}.

Note: the “linear equivalence certificate” u/u′ ∈ K (C ) is
randomised.
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Representing P×
x ,y

Let x = [L(−D)] and y = [L(−E )] ∈ J . What is P×x ,y?

Fix s0 ∈ V1, and let D0
def
= (s0)1.

Then L ≃ OC (D0) ⇝ x = [D − D0], y = [E − D0].

Unfortunately, D − D0 and E − D0 intersect,
so ND−D0

(
1 ∈ OC (E − D0)

)
is not a valid element of P×x ,y .

Solution: fix another t0 ∈ V1, such that E0
def
= (t0)1��∩D0.

If D��∩E0, E��∩D0, and D��∩E , then

[D,E ]
def
= ND−D0

(
1 ∈ OC (E − E0)

)
∈ P×x ,y ,

and P×x ,y = {λ · [D,E ] | λ ∈ K×}.

⇝ We can use [D,E ] as a reference point for P×x ,y .

However, it depends on the choice of effective divisors D, E
such that x = [L(−D)] and y = [L(−E )] . . .
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Comparison formula

Algorithm (Comparison in P×)
Given 4 points x1 = [L(−D1)], y1 = [L(−E1)],
x2 = [L(−D2)], y2 = [L(−E1)] of J ,
we want to compare [D1,E1] with [D2,E2].

1 Use Makdisi’s equality test to check x1 = x2 and y1 = y2.
If not, complain / terminate.
Otherwise, we get d1, d2, e1, e2 ∈ V2 such that

D1 + (d1)2 = D2 + (d2)2 and E1 + (e1)2 = E2 + (e2)2.

2 Output that [D2,E2] = λ · [D1,E1], where

λ =
NE2(d1/d2) ND0(e1/e2)

NE0(d1/d2) ND1(e1/e2)
=

NE1(d1/d2) ND0(e1/e2)

NE0(d1/d2) ND2(e1/e2)
.

Notes: V2(−D0) = s0 · V1, and V2(−E0) = t0 · V1.
May need to run several times until the norms work.
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Evaluating norms

Given V2(−D) encoding effective D =
∑

i niPi , and columns
in Km representing u, v ∈ V2 not vanishing at the Pi , want to
evaluate

ND(u/v) =
∏
i

u

v
(Pi)

ni ∈ K×.

Algorithm (Norm)

1 Compute V4(−D) = V2 · V2(−D).

2 Find supplements V2 = S ⊕ V2(−D) and
V4 = T ⊕ V4(−D).

3 Compute ∆u = det( S �
� // V2

·u // V4
// // T ) and ∆v .

4 Output ND(u/v) = ∆u/∆v .

Explanation: V (−D) = Ker
(
s 7→ s(D)

)
.
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Summary

We fix once and for all L ≫ 0 −→ C ,
and then two sections s0, t0 of L such that

D0
def
= (s0)1 ��∩ E0

def
= (t0)1.

Given x , y ∈ J , choose effective divisors D,E such that

x = [L(−D)], y = [L(−E )] and D��∩E0, E��∩D0, D��∩E ,

and represent them by

V2(−D), V2(−E ) ⊂ V2 = sections of L⊗2.

Then [D,E ]
def
= ND−D0

(
1 ∈ OC (E − E0)

)
∈ P×x ,y ,

so we represent λ · [D,E ] ∈ P×x ,y by the triple(
V2(−D) , V2(−E ) , λ

)
(where λ ∈ K×).
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Group law in J

Algorithm (Makdisi’s addflip)

Given V2(−D1) and V2(−D2)
representing x1 = [L(−D1)] and x2 = [L(−D2)] ∈ J ,

compute V2(−D3) representing x3 = [L(−D3)]
such that x1 + x2 + x3 = 0 ∈ J .

1 Compute V4(−D1 − D2) = V2(−D1) · V2(−D2).

2 Compute
V3(−D1 − D2) = {v ∈ V3 | v · V1 ⊂ V4(−D1 − D2)}.

3 Pick 0 ̸= u ∈ V3(−D1 − D2), so (u)3 = D1 + D2 + D3.

4 Compute u · V2 = V5(−D1 − D2 − D3).

5 Compute
V2(−D3) = {v ∈ V2 | v · V3(−D1 − D2) ⊂ u · V2}.
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Group law in J

Algorithm (Makdisi’s negation)

Given V2(−D) representing x = [L(−D)] ∈ J ,
compute V2(−D ′) representing x ′ = [L(−D ′)] ∈ J
such that x + x ′ = 0 ∈ J .

1 Pick 0 ̸= u ∈ V2(−D), so that (u)2 = D + D ′.

2 Compute u · V2 = V4(−D − D ′).

3 Compute V2(−D ′) = {v ∈ V2 | v · V2(−D) ⊂ u · V2}.
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Partial group laws in P×

Algorithm (Left partial group law in P×)
Given 4 points of J
x1 = [L(−D1)], y1 = [L(−E1)], x2 = [L(−D2)], y2 = [L(−E2)]

such that y1 = y2
def
= y ,

want to apply P×x1,y ⊗P×x2,y → P×x1+x2,y to [D1,E1] and [D2,E2].

1 Find λ ∈ K× such that [D2,E2] = λ[D2,E1].

2 Find (V2(−D3), u) such that (u)3 = D1 + D2 + D3, and
then (V2(−D4), v) such that (v)2 = D3 + D4.

3 Output λ · µ · [D4,E1], where µ = NE1

(
u
vs0

)/
NE0

(
u
vs0

)
.

The right partial group law is similar.
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