Improvements to Satoh’s point counting algorithm

2026/01/15 — Atelier Pari/GP, Bordeaux

Damien Robert

Equipe Canari, Inria Bordeaux Sud-Ouest

universice &
"BORDEAW (2 zic2 —

A commit

$ git show --stat abdf3b3b

commit abdf3b3baclcb05eb462296ad2al63aflec6bb59

Author: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
Date: Tue Feb 9 17:20:07 2021 +0100

FIxqE ellcard: Implement Damien Robert variant of Satoh

src/basemath/FUXQE.C | 106 4ttt o- oo oo oo
1 file changed, 17 insertions(+), 89 deletions(-)

Timings

q | Time (old) Memory (old) | Time (new) Memory (new)
111008 48.55 512MB 4.5 128MB
101102 91s 1024MB 9s 128MB
101256 633s 4096MB 265 128MB
101310 924s 8192MB 355 256MB
101418 1813s 16384MB 555 256MB

Timings for point counting on an elliptic curve E/IFq with Satoh'’s algorithm.

Point counting on an elliptic curve

© © o e

®

E/]Fq, g = p", an ordinary elliptic curve

Goal: compute the action of 7T, on some cohomology group H(E, G) to recover
Xe(X) = X2 =X +q= (X - (X—q/A),

hence#E =g +1—t

Example: the Frobenius 77, acts on the global differentials HO(E, Q}E/IFq) C H;R(E/]Fq)
n;(wE) = CWg

But Ty isinseparable,soc = 0...

Instead, use the action of the Verschiebung fcq on global differentials

This time we get the invertible eigenvalue A mod p

Computing 7?,1 using Vélu's formulas is £2(q)

If p is small, we may compute the action of the small Verschiebung 77, : E — o~ 1(E) instead:
if 5 (0 (wg)) = A'wg, thenA = Ng,_g (A)

Butif pis small,A mod pis notenough to recover t: || < Zﬁ,

sowe need ~ 1/2log(q) = n/2 - log(p) bits of precision

[Satoh 2000]: compute the action of a lift of ﬁp to E/Zq the canonical lift ofE/]Fq.

Satoh’s algorithm

@ Compute equations for the canonical lift E/Zq to p-adic precisionm = n/2 - |0g(p) +5

@ Compute the action of a suitable lift V of f(p on differentials:
V(e N (wg)) = Nwg

0 is a generator of Gal(]Fq/]Fp) = Gal(Zq/Zp).

@ Returnt = NZ,,/ZV A" + q/NZq/Z,, (A") asan integer.

Satoh'’s algorithm: Step 1
Compute E/Zq to p-adic precision m:
@ Use Newton iterations on the equation

@, (j(E), 0 (j(E)) =0,
where <15p is the modular polynomial
@ We use Newton iterations inside the Newton iterations (Harley) to solve the sesquilinear equation:
acbp . . 8cbp . .
ek a—X(](E),U(](E») +o(e)- a—Y(](E),U(](E))) =c
@ o is computed by picking up a Teichmidiller representative T,, (X) for Zq = ZP[X]/Tn (X).
@ The first version of Satoh would instead lift simultaneously the system of equations:

@,G(E,j(Ep1)) =0, j(E,) =j(E),

The Frobenius 71, is étale in X, (p), but not the Verschiebung: by Kronecker’s congruence
P o(p
<1>F7 =X -Y)(X-YP) mod v,
soifn > 2,

0Py (B, o GE) = 0, S F By, o GE) £0 mod
ﬁ(](),0((E))) = ,W(](), 0((E))) #0 mod p

¢ Ifg= pz, @F(X, Y) is not a good model of X (p)
~ DamienRobert ImprovementstoSatoh’s pointcountingalgorthm g/15

Satoh’s algorithm: Step 2

Compute the action of a suitable lift V of ﬁp on differentials:

o Ker, = E[p](F,) = {hp(x) = 0} with deghp = L7

Explicitely, ‘I/p = h;, where ‘Fp is the p-division polynomial,

¢ E[p] is not étale over Zq, so the points in Ker ﬁp do not lift uniquely to E[p].

o Let F be the lift of T, to E, and V its dual (so that FV = [p], VF = [p]).Then V is a“canonical”
lift of ﬁ'p: it is the unique lift whose kernel points live in the unramified extension Zg” of Zq.

o IFE/ (Zq/pZZq) is a deformation of E, the points in E[p] (Fq) can lift to E(ZZ”/ﬁZ};”) iff
E=E modp%

@ Once we have lifted to pz, Newton iterations converge

@ In practice we lift hp to Hp rather than the kernel points individually: using the equation
H,(X) | ¥, 2(X).

@ We recover the kernel of V.

@ We can then use Vélu's formulas to compute the action of V on differentials.

Complexity

Complexity to work in p-adic precision 71:
@ Step 1 is dominated by the evaluations of the modular polynomial <15p: 5(mnp2)

@ For Step 2, lifting hip is dominated by the evaluations of the division polynomial ‘I’p: 5(mnp2).
Computing V via Vélu's formula is in 5(mnp).

@ For Step 3, the norm can be done by a resultant in 5(mnp).

Total cost for point-counting, with m = O(n): 5(112;92)

In practice, for small p, Step 2 is dominating.

Modular forms

@ Once we have lifted hp to Hp,VéIu's formula give a rational function
(x,y) = (r(x),cyr’(x))

describing the isogeny V : E — o= 1(E).

@ The action on differentials is given by c.

@ The literature (and the previous Pari code) had a slightly different approach: use Vélu's formula to
only compute the normalized Weierstrass equations of the codomain of V:

E :y2 =3 +ax+0
@ Then we just need to find the isomorphism 7y : E" =~ o1 (E"):

<y gives the action on differentials # (up to a sign).

@ Concretely, if E y2 =x3 +ax+b:
4 6
ut = (a'fo~@))", ub=(b'/o7(b))" .
@ This is because in a short Weierstrass equation y2 =x3 + aux + ag, the coefficients a4, aq are

modular forms of Weight 4 and 6 respectively.

@ Modular forms are modular invariants that can keep track of the action on differentials
(formally: sections of a power of the Hodge line bundle).

Bypassing step 2
@ Step 1 already involves the modular function j via the modular equation:
@,(i(E), 0 (j(E)) =0
@ Unfortunately j is of weight 0.
@ Butit's g-derivative j is of weight 2:

a
j'=-18-2;

Ay
@ The modular equation Cbp (j1,J2) = 0also gives a modular equation on j':

” 8<I>p .. » a@p .
Iy i) + 25y G1sj2) =0
Which is similar to the equation used for Newton lifting!

@ So the modular polynomial @,, alone is already enough to recover the action on differentials!
(This of course was known since [Elkies 1992] but curiously was not used in Satoh’s algorithm).

o, P
ax (@ G(E)), j(E))
oD, TR

—v (@ ((E)), j(E))

_—p-

@ So we can directly recover the action on differentials at the end of the Newton iteration in Step 1!

Bypassing step 2: the GP code (simplified)

Phi = polmodular(p);
dPhiX=deriv(Phi,x);
dPhiY=deriv(Phi,y);

m=ffinit(p,deg, 't)
M=polteichmuller(m,p,prec);
u=ffgen(m, "u)

/7 [...]

FindTrace(J)={
K=subst(J,'t, 't"p)) // K=0(J)
num=substvec(dPhiX, [x,y], [K,J]);
den=substvec(dPhiY, [x,y], [K,J]);
u2=-p*num/den; return(u2);

/* The square of the trace can then be computed via:
norm=polresultant(liftall(u2),M);

squared trace = norm+q~2/norm+2*q;

&

Bypassing step 2: the Pari code

static GEN
get trace Robert(GEN J, GEN phi, GEN Xm, GEN T, GEN g, ulong p, long e)

{
GEN K = ZpXQ frob(J, Xm, T, q, p);

GEN Jp = FpXQ powers(J, n, T, q);

GEN Kp = FpXQ powers(K, n, T, q);

GEN Jd = FpXC powderiv(Jp, q);

GEN Kd = FpXC_powderiv(Kp, q);

GEN Dx = FpM FpXQV bilinear(phi, Kd, Jp, T, q);
GEN Dy = FpM_FpXQV_bilinear(phi, Kp, Jd, T, q);

GEN C = ZpXQ_inv(ZX divuexact(Dy, p), T, utoi(p), e);
return FpX neg(FpXQ mul(Dx, C, T, q), q);

Point counting algorithms

Etale cohomology:
@ [Schoof 1985]: O(n° log5 p)
o [SEA 1992]: O(n* Iog4 p) (Heuristic)

Crystalline cohomology:

@ [Satoh 2000] (canonical lifts of ordinary curves): 5(112;72)

Monsky-Washnitzer / Rigid cohomology:
o [Kedlaya 2001]:5(113;7)
@ [Harvey 2007]: 5(113‘5;71/2 +nd logp)

Bonus: improving the dependency in p

@ Bypassing Step 2 gives huge speed ups in practice, but does not change the asymptotic
complexity.

@ Can we bypass Step 1 instead?

o Yes! E is the canonical lift E iff when we lift hp to E and compute the associated isogeny, the
codomain is isomorphic to o1 (E).

@ This gives an implicit modular equation, to which we can apply Newton iterations
o Aswritten above, Step 2 involves ¥, and costs O(nmp?).
@ But we can recover lip in quasi-linear time by interpolation on the equation 7'(° 7T, = [pl.

@ And during the lift of Iip, to check that Hp | ¥, »» We can just evaluate ‘I/p mod Hp directly by
the double and add algorithm. This is also quasi-linear.

@ Total complexity: 5(n2p) [Maiga-R. 2021]

@ We can do even better using the “new” fancy HD representations of isogenies.
@ The HD representation of ﬁ:p allows for its evaluation in time polylog(p).
@ This is compatible with lifting.

e Total complexity: O(n? Iogsp +n Iog11 p) [R. 2022]

Point counting algorithms, revisited

[Schoof 1985]: O(1° log5 p)
[SEA 10021: O(n# log® p)

[Satoh 2000]: 5(112;72)
[Maiga - R. 2021]: 5(712;7)

[R. 2022]: O (n? log® p+n log"* P)

[Kedlaya 20011: O(123p)

[Harvey 2007]: O(13°p1/2 + n log p)

