
Improvements to Satoh’s point counting algorithm
2026/01/15 — Atelier Pari/GP, Bordeaux

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

A commit

$ git show --stat abdf3b3b

commit abdf3b3bac1cb05eb462296ad2a163af1ec6bb59

Author: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>

Date: Tue Feb 9 17:20:07 2021 +0100

FlxqE_ellcard: Implement Damien Robert variant of Satoh

src/basemath/FlxqE.c | 106 +++++++++--

1 file changed, 17 insertions(+), 89 deletions(-)

Damien Robert Improvements to Satoh’s point counting algorithm 2 / 15

Timings

𝑞 Time (old) Memory (old) Time (new) Memory (new)

111008 48.5s 512MB 4.5s 128MB
101102 91s 1024MB 9s 128MB
101256 633s 4096MB 26s 128MB
101310 924s 8192MB 35s 256MB
101418 1813s 16384MB 55s 256MB

Timings for point counting on an elliptic curve 𝐸/𝔽𝑞 with Satoh’s algorithm.

Damien Robert Improvements to Satoh’s point counting algorithm 3 / 15

Point counting on an elliptic curve

𝐸/𝔽𝑞, 𝑞 = 𝑝𝑛, an ordinary elliptic curve

Goal: compute the action of 𝜋𝑞 on some cohomology group 𝐻1(𝐸, 𝐺) to recover

𝜒𝜋(𝑋) = 𝑋2 − 𝑡𝑋 + 𝑞 = (𝑋 − 𝜆)(𝑋 − 𝑞/𝜆),

hence #𝐸 = 𝑞 + 1 − 𝑡

Example: the Frobenius 𝜋𝑞 acts on the global differentials 𝐻0(𝐸, 𝛺1
𝐸/𝔽𝑞

) ⊂ 𝐻1
𝑑𝑅(𝐸/𝔽𝑞)

𝜋∗
𝑞(𝜔𝐸) = 𝑐𝜔𝐸

But 𝜋𝑞 is inseparable, so 𝑐 = 0…
Instead, use the action of the Verschiebung 𝜋̂𝑞 on global differentials

This time we get the invertible eigenvalue 𝜆 mod 𝑝
/ Computing 𝜋̂𝑞 using Vélu’s formulas is 𝛺(𝑞)

, If 𝑝 is small, we may compute the action of the small Verschiebung 𝜋̂𝑝 ∶ 𝐸 → 𝜎−1(𝐸) instead:

if 𝜋̂∗
𝑝(𝜎−1(𝜔𝐸)) = 𝜆′𝜔𝐸, then 𝜆 = 𝑁𝔽𝑞/𝔽𝑝

(𝜆′)

/ But if 𝑝 is small, 𝜆 mod 𝑝 is not enough to recover 𝑡: |𝑡| ≤ 2√𝑞,
so we need ≈ 1/2 log(𝑞) = 𝑛/2 ⋅ log(𝑝) bits of precision

, [Satoh 2000]: compute the action of a lift of 𝜋̂𝑝 to 𝐸̂/ℤ𝑞 the canonical lift of 𝐸/𝔽𝑞.

Damien Robert Improvements to Satoh’s point counting algorithm 4 / 15

Satoh’s algorithm

1 Compute equations for the canonical lift 𝐸̂/ℤ𝑞 to 𝑝-adic precision 𝑚 = 𝑛/2 ⋅ log(𝑝) + 5

2 Compute the action of a suitable lift 𝑉 of 𝜋̂𝑝 on differentials:

𝑉∗(𝜎−1(𝜔𝐸̂)) = 𝜆′𝜔𝐸̂

𝜎 is a generator ofGal(𝔽𝑞/𝔽𝑝) = Gal(ℤ𝑞/ℤ𝑝).

3 Return 𝑡 = 𝑁ℤ𝑞/ℤ𝑝
(𝜆′) + 𝑞/𝑁ℤ𝑞/ℤ𝑝

(𝜆′) as an integer.

Damien Robert Improvements to Satoh’s point counting algorithm 5 / 15

Satoh’s algorithm: Step 1
Compute 𝐸̂/ℤ𝑞 to 𝑝-adic precision 𝑚:

Use Newton iterations on the equation

𝛷𝑝(𝑗(𝐸̂), 𝜎(𝑗(𝐸̂)) = 0,
where 𝛷𝑝 is the modular polynomial
We use Newton iterations inside the Newton iterations (Harley) to solve the sesquilinear equation:

𝑒 ⋅
𝜕𝛷𝑝

𝜕𝑋 (𝑗(𝐸̂), 𝜎(𝑗(𝐸̂))) + 𝜎(𝑒) ⋅
𝜕𝛷𝑝

𝜕𝑌 (𝑗(𝐸̂), 𝜎(𝑗(𝐸̂))) = 𝑐

𝜎 is computed by picking up a Teichmüller representative 𝑇𝑛(𝑋) for ℤ𝑞 = ℤ𝑝[𝑋]/𝑇𝑛(𝑋).
The first version of Satoh would instead lift simultaneously the system of equations:

𝛷𝑝(𝑗(𝐸̂𝑖), 𝑗(𝐸̂𝑖+1)) = 0, 𝑗(𝐸̂𝑛) = 𝑗(𝐸̂0),

" The Frobenius 𝜋𝑝 is étale in 𝑋0(𝑝), but not the Verschiebung: by Kronecker’s congruence

𝛷𝑝 = (𝑋𝑝 − 𝑌)(𝑋 − 𝑌𝑝) mod 𝑝,
so if 𝑛 > 2,

𝜕𝛷𝑝

𝜕𝑋 (𝑗(𝐸̂), 𝜎(𝑗(𝐸̂))) = 0,
𝜕𝛷𝑝

𝜕𝑌 (𝑗(𝐸̂), 𝜎(𝑗(𝐸̂))) ≠ 0 mod 𝑝

" If 𝑞 = 𝑝2, 𝛷𝑝(𝑋, 𝑌) is not a good model of 𝑋0(𝑝)

Damien Robert Improvements to Satoh’s point counting algorithm 6 / 15

Satoh’s algorithm: Step 2

Compute the action of a suitable lift 𝑉 of 𝜋̂𝑝 on differentials:

Ker 𝜋̂𝑝 = 𝐸[𝑝](𝔽𝑞) = {ℎ𝑃(𝑥) = 0} with deg ℎ𝑃 = 𝑝−1
2 .

Explicitely, 𝛹𝑝 = ℎ𝑝
𝑝, where 𝛹𝑝 is the 𝑝-division polynomial,

" 𝐸̂[𝑝] is not étale over ℤ𝑞, so the points in Ker 𝜋̂𝑝 do not lift uniquely to 𝐸̂[𝑝].

Let 𝐹 be the lift of 𝜋𝑝 to 𝐸̂, and 𝑉 its dual (so that 𝐹𝑉 = [𝑝], 𝑉𝐹 = [𝑝]). Then 𝑉 is a “canonical”
lift of 𝜋̂𝑝: it is the unique lift whose kernel points live in the unramified extension ℤ𝑢𝑛

𝑞 of ℤ𝑞.

If 𝐸/(ℤ𝑞/𝑝2ℤ𝑞) is a deformation of 𝐸, the points in 𝐸[𝑝](𝔽𝑞) can lift to 𝐸(ℤ𝑢𝑛
𝑞 /𝑝2ℤ𝑢𝑛

𝑞) iff

𝐸 ≡ 𝐸̂ mod 𝑝2.

Once we have lifted to 𝑝2, Newton iterations converge

In practice we lift ℎ𝑝 to 𝐻𝑝 rather than the kernel points individually: using the equation

𝐻𝑝(𝑋) ∣ 𝛹𝑝,𝐸̂(𝑋).

We recover the kernel of 𝑉 .

We can then use Vélu’s formulas to compute the action of 𝑉 on differentials.

Damien Robert Improvements to Satoh’s point counting algorithm 7 / 15

Complexity

Complexity to work in 𝑝-adic precision 𝑚:

Step 1 is dominated by the evaluations of the modular polynomial 𝛷𝑝: 𝑂(𝑚𝑛𝑝2)

For Step 2, lifting ℎ𝑃 is dominated by the evaluations of the division polynomial 𝛹𝑝: 𝑂(𝑚𝑛𝑝2).
Computing 𝑉 via Vélu’s formula is in 𝑂(𝑚𝑛𝑝).
For Step 3, the norm can be done by a resultant in 𝑂(𝑚𝑛𝑝).

Total cost for point-counting, with 𝑚 = 𝑂(𝑛): 𝑂(𝑛2𝑝2)

In practice, for small 𝑝, Step 2 is dominating.

Damien Robert Improvements to Satoh’s point counting algorithm 8 / 15

Modular forms
Once we have lifted ℎ𝑝 to 𝐻𝑝, Vélu’s formula give a rational function

(𝑥, 𝑦) ↦ (𝑟(𝑥), 𝑐𝑦𝑟′(𝑥))

describing the isogeny 𝑉 ∶ 𝐸̂ → 𝜎−1(𝐸̂).
The action on differentials is given by 𝑐.

The literature (and the previous Pari code) had a slightly different approach: use Vélu’s formula to
only compute the normalizedWeierstrass equations of the codomain of 𝑉 :

𝐸̂′ ∶ 𝑦2 = 𝑥3 + 𝑎′𝑥 + 𝑏′

Then we just need to find the isomorphism 𝛾 ∶ 𝐸′ ≃ 𝜎−1(𝐸̂):
𝛾 gives the action on differentials 𝑢 (up to a sign).

Concretely, if 𝐸̂ ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏:

𝑢4 = (𝑎′/𝜎−1(𝑎′))4 , 𝑢6 = (𝑏′/𝜎−1(𝑏))6 .

This is because in a shortWeierstrass equation 𝑦2 = 𝑥3 + 𝑎4𝑥 + 𝑎6, the coefficients 𝑎4, 𝑎6 are
modular forms ofWeight 4 and 6 respectively.

Modular forms are modular invariants that can keep track of the action on differentials
(formally: sections of a power of the Hodge line bundle).

Damien Robert Improvements to Satoh’s point counting algorithm 9 / 15

Bypassing step 2
Step 1 already involves the modular function 𝑗 via the modular equation:

𝛷𝑝(𝑗(𝐸̂), 𝜎(𝑗(𝐸̂))) = 0

Unfortunately 𝑗 is of weight 0.
But it’s 𝑞-derivative 𝑗′ is of weight 2:

𝑗′ = −18
𝑎6
𝑎4

𝑗

The modular equation 𝛷𝑝(𝑗1, 𝑗2) = 0 also gives a modular equation on 𝑗′:

𝑗′1
𝜕𝛷𝑝

𝜕𝑋 (𝑗1, 𝑗2) + 𝑗′2
𝜕𝛷𝑝

𝜕𝑌 (𝑗1, 𝑗2) = 0

Which is similar to the equation used for Newton lifting!

So the modular polynomial 𝛷𝑝 alone is already enough to recover the action on differentials!
(This of course was known since [Elkies 1992] but curiously was not used in Satoh’s algorithm).

𝑢2 = −𝑝 ⋅
𝜕𝛷𝑝

𝜕𝑋 (𝜎(𝑗(𝐸̂)), 𝑗(𝐸̂))
𝜕𝛷𝑝

𝜕𝑌 (𝜎(𝑗(𝐸̂)), 𝑗(𝐸̂))

So we can directly recover the action on differentials at the end of the Newton iteration in Step 1!

Damien Robert Improvements to Satoh’s point counting algorithm 10 / 15

Bypassing step 2: the GP code (simplified)

Phi = polmodular(p);

dPhiX=deriv(Phi,x);

dPhiY=deriv(Phi,y);

m=ffinit(p,deg,’t)

M=polteichmuller(m,p,prec);

u=ffgen(m,’u)

// [...]

FindTrace(J)={

K=subst(J,’t,’t^p)) // K=σ(J)

num=substvec(dPhiX,[x,y],[K,J]);

den=substvec(dPhiY,[x,y],[K,J]);

u2=-p*num/den; return(u2);

/* The square of the trace can then be computed via:

norm=polresultant(liftall(u2),M);

squared_trace = norm+q^2/norm+2*q;

*/

}

Damien Robert Improvements to Satoh’s point counting algorithm 11 / 15

Bypassing step 2: the Pari code

static GEN

get_trace_Robert(GEN J, GEN phi, GEN Xm, GEN T, GEN q, ulong p, long e)

{

GEN K = ZpXQ_frob(J, Xm, T, q, p);

GEN Jp = FpXQ_powers(J, n, T, q);

GEN Kp = FpXQ_powers(K, n, T, q);

GEN Jd = FpXC_powderiv(Jp, q);

GEN Kd = FpXC_powderiv(Kp, q);

GEN Dx = FpM_FpXQV_bilinear(phi, Kd, Jp, T, q);

GEN Dy = FpM_FpXQV_bilinear(phi, Kp, Jd, T, q);

GEN C = ZpXQ_inv(ZX_divuexact(Dy, p), T, utoi(p), e);

return FpX_neg(FpXQ_mul(Dx, C, T, q), q);

}

Damien Robert Improvements to Satoh’s point counting algorithm 12 / 15

Point counting algorithms

Étale cohomology:

[Schoof 1985]: 𝑂(𝑛5 log5 𝑝)

[SEA 1992]: 𝑂(𝑛4 log4 𝑝) (Heuristic)

Crystalline cohomology:

[Satoh 2000] (canonical lifts of ordinary curves): 𝑂(𝑛2𝑝2)

Monsky-Washnitzer / Rigid cohomology:

[Kedlaya 2001]: 𝑂(𝑛3𝑝)
[Harvey 2007]: 𝑂(𝑛3.5𝑝1/2 + 𝑛5 log 𝑝)

Damien Robert Improvements to Satoh’s point counting algorithm 13 / 15

Bonus: improving the dependency in 𝑝

Bypassing Step 2 gives huge speed ups in practice, but does not change the asymptotic
complexity.

Can we bypass Step 1 instead?

Yes! 𝐸 is the canonical lift 𝐸̂ iff when we lift ℎ𝑃 to 𝐸 and compute the associated isogeny, the
codomain is isomorphic to 𝜎−1(𝐸).
This gives an implicit modular equation, to which we can apply Newton iterations

As written above, Step 2 involves 𝛹𝑝 and costs 𝑂(𝑛𝑚𝑝2).
But we can recover ℎ𝑃 in quasi-linear time by interpolation on the equation 𝜋̂𝑝 ∘ 𝜋𝑝 = [𝑝].
And during the lift of ℎ𝑃, to check that 𝐻𝑃 ∣ 𝛹𝑝, we can just evaluate 𝛹𝑝 mod 𝐻𝑃 directly by
the double and add algorithm. This is also quasi-linear.

Total complexity: 𝑂(𝑛2𝑝) [Maiga-R. 2021]

We can do even better using the “new” fancy HD representations of isogenies.

The HD representation of 𝜋̂𝑝 allows for its evaluation in time polylog(𝑝).
This is compatible with lifting.

Total complexity: 𝑂(𝑛2 log8 𝑝 + 𝑛 log11 𝑝) [R. 2022]

Damien Robert Improvements to Satoh’s point counting algorithm 14 / 15

Point counting algorithms, revisited

[Schoof 1985]: 𝑂(𝑛5 log5 𝑝)

[SEA 1992]: 𝑂(𝑛4 log4 𝑝)

[Satoh 2000]: 𝑂(𝑛2𝑝2)
[Maiga – R. 2021]: 𝑂(𝑛2𝑝)

[R. 2022]: 𝑂(𝑛2 log8 𝑝 + 𝑛 log11 𝑝)

[Kedlaya 2001]: 𝑂(𝑛3𝑝)
[Harvey 2007]: 𝑂(𝑛3.5𝑝1/2 + 𝑛5 log 𝑝)

Damien Robert Improvements to Satoh’s point counting algorithm 15 / 15

