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Reminder

Field extension K/F ⇝ automorphism group Aut(K/F )

K/F is Galois if |Aut(K/F )| = [K : F ].
Then: Galois group Gal(K/F ) = Aut(K/F ).

subfields F ⊂ L ⊂ K ←→ subgroups H ⊂ Gal(K/F )

F 7−→ Gal(K/F )

K H ←− [ H

P ∈ F [X ] irreducible, let K = F (α) with P(α) = 0; let n = degP.

Splitting field K̃ of P = Galois closure K̃/F of K/F .
Galois group Gal(K̃/F ) acts on the n roots of P in K̃ .
=⇒ Gal(K̃/F ) ⊂ Sn.
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polgalois

We can compute the Galois group of the Galois closure of a
number field, as a transitive permutation group. Restricted to
degree ≤ 7, or degree ≤ 11 with the galdata optional
package.

P1 = x^4-5;
polgalois(P1)
% = [8, -1, 1, "D(4)"]

Interpretation: the Galois group has order 8, is not contained in
the alternating group ("signature −1"), and is isomorphic to D4.
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polgalois

P2 = x^4-x^3-7*x^2+2*x+9;
polgalois(P2)
% = [12, 1, 1, "A4"]

The Galois group has order 12 and signature 1, and is
isomorphic to A4.

P3 = x^4-x^3-3*x^2+x-1;
polgalois(P3)
% = [24, -1, 1, "S4"]

The Galois group has order 24 and signature −1, and is
isomorphic to S4.
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nfsplitting

We can compute a polynomial defining the splitting field of the
input polynomial, that is, the smallest field over which the input
polynomial is a product of linear factors.

Q1 = nfsplitting(P1)
% = x^8 + 70*x^4 + 15625
Q2 = nfsplitting(P2)
% = x^12 - 59*x^10 + 1269*x^8 - 12231*x^6

+ 51997*x^4 - 79707*x^2 + 26569

This is the same as a defining polynomial for the Galois closure
of the number field generated by one root of the input
polynomial.
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nfsplitting

The polynomial output by nfsplitting can be large.

Q3 = nfsplitting(P3)
% = x^24+12*x^23-66*x^22-1232*x^21+735*x^20
+54012*x^19+51764*x^18-1348092*x^17-2201841*x^16
+21708244*x^15+41344014*x^14-241723272*x^13
-454688929*x^12+1972336584*x^11+3130578366*x^10
-12348327032*x^9-13356023346*x^8+59757161004*x^7
+32173517686*x^6-204540935496*x^5-11176476888*x^4
+433089193668*x^3-155456858376*x^2-422808875280*x
+320938557273
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polredbest

We can use polredbest to compute a simpler polynomial
defining the same number field.

Q3 = polredbest(Q3)
% = x^24-6*x^23+18*x^22-38*x^21+60*x^20-54*x^19
-13*x^18+126*x^17-228*x^16+220*x^15+24*x^14
-396*x^13+521*x^12-216*x^11-48*x^10-32*x^9-66*x^8
+666*x^7-1013*x^6+348*x^5+510*x^4-654*x^3+234*x^2
+36*x+9
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galoisinit
We can use galoisinit to compute the automorphism group
of a number field that is Galois over Q, under certain condition
on the group (“weakly super-solvable”).

gal = galoisinit(Q3);

The gen component is a list of generators of the automorphism
group, expressed as permutations of the roots.

gal.gen
% = [Vecsmall([19,11,17,14,13,12,10,9,8,7,2,6,5,
4,23,22,3,21,1,24,18,16,15,20]),Vecsmall([14,10,5,
19,3,24,11,16,22,2,7,20,17,1,21,8,13,23,4,12,15,9,
18,6]),Vecsmall([5,15,6,13,20,19,23,7,11,18,21,4,
12,17,16,2,24,22,3,1,9,10,8,14]),Vecsmall([2,1,9,
10,16,21,14,17,3,4,19,18,22,7,20,5,8,12,11,15,6,
13,24,23])]
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galoisinit
The orders components contains orders of composition
factors of the group, and their product is the order of the group.

ord = gal.orders
% = Vecsmall([2, 2, 3, 2])
prod(i=1,#ord,ord[i])
% = 24

With the function galoisidentify, we can obtain the GAP4
index of the group, and with galoisgetname its name.

galoisidentify(gal)
% = [24, 12]
? galoisgetname(24,12)
% = "S4"
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Effective Galois theory
galoissubgroups computes the list of all subgroups of a
group.

L = galoissubgroups(gal);
#L
% = 30

Then we can compute fixed fields of various subgroups of the
Galois group with galoisfixedfield.

R1 = galoisfixedfield(gal,L[25])[1];
polgalois(R1)
% = [24, 1, 1, "S_4(6d) = [2^2]S(3)"]
R2 = galoisfixedfield(gal,L[28])[1];
polgalois(R2)
% = [24, -1, 1, "S_4(6c) = 1/2[2^3]S(3)"]
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galoissplittinginit

We can replace nfsplitting followed by galoisinit by
galoissplittinginit, which is faster and has no restriction
on the group.

P = x^5+20*x+16;
polgalois(P)
% = [60, 1, 4, "A5"]

The polynomial has Galois group A5.

G = galoissplittinginit(P);
G.pol == nfsplitting(P)
% = 1

The splitting field is correct.
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galoissplittinginit

We check that the Galois group is A5.

galoisidentify(G)
% = [60, 5]
galoisgetname(60,5)
% = "A5"
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Reminder
K/F Galois extension of number fields of Galois group G.
P prime ideal of ZK above p.

P unramified: Frobenius element FrobP ∈ G with

FrobP(x) ≡ xN(p) mod P.

P arbitrary: decomposition group GP ⊂ G:

GP = {g ∈ G | g(P) = P}.

and ramification groups GP = GP,−1 ⊃ GP,0 ⊃ GP,1 ⊃ . . .

GP,i = {g ∈ GP | gx ≡ x mod Pi+1}.
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Frobenius elements

At an unramified prime, we can compute the Frobenius element
with idealfrobenius.

nf = nfinit(Q3);
dec2 = idealprimedec(nf,2);
pr2 = dec2[1];
[#dec2, pr2.f, pr2.e]
% = [6, 4, 1]
frob2 = idealfrobenius(nf,gal,pr2);
permorder(frob2)
% = 4

We check that the Frobenius element has order equal to the
residue degree.
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Ramification groups
We can compute ramification groups. Let’s first find the ramified
primes.

factor(nf.disc)
% =
[ 3 28]
[11 16]

The ramified primes are 3 and 11.

dec3 = idealprimedec(nf,3);
pr3 = dec3[1];
[#dec3, pr3.f, pr3.e]
% = [4, 1, 6]

There are 4 prime ideals above 3. They have residue degree 1
and ramification index 6.
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Ramification groups

We compute the sequence of ramification groups
with idealramgroups.

ram3 = idealramgroups(nf,gal,pr3);
#ram3
% = 3

There are three nontrivial ramification groups to consider.

galoisidentify(ram3[1])
% = [6, 1]
galoisisabelian(ram3[1])
% = 0

The decomposition group has order 6, and is isomorphic to S3.
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galoisidentify(ram3[2])
% = [6, 1]

The inertia group equals the decomposition group (we already
knew that since the residue degree is 1).

galoisidentify(ram3[3])
% = [3, 1]

The wild inertia group is the cyclic group C3, and all the higher
ramification groups are trivial.
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Ramification groups

dec11 = idealprimedec(nf,11);
pr11 = dec11[1];
[#dec11, pr11.f, pr11.e]
% = [4, 2, 3]

There are 4 prime ideals above 11. They have residue
degree 2 and ramification index 3.

ram11 = idealramgroups(nf,gal,pr11);
#ram11
% = 2

The wild ramification group is trivial (which we knew since 11 is
coprime to the group order).
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Ramification groups

galoisidentify(ram11[1])
% = [6, 1]
galoisidentify(ram11[2])
% = [3, 1]

The decomposition group is isomorphic to S3 (we already knew
it had index 4 in the Galois group), and the inertia group is C3
(we already knew it had index 2 in the decomposition group).
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Reminder

A modulus m of a number field K is a pair (mf ,m∞) of a
nonzero ideal mf and a set m∞ of real embeddings of K .

Define UK (m) ⊂ K×: we have β ∈ UK (m) iff
▶ vp(β − 1) ≥ vp(mf ) for all p | mf , and
▶ σ(β) > 0 for all σ ∈ m∞.

The ray class group

Clm(K ) =
(nonzero ideals of K coprime to mf )

(principal ideals βZK with β ∈ UK (m))
.

is a finite abelian group.
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Reminder

For every modulus m, there exists a unique Abelian extension
of K , the ray class field K (m), such that

Gal(K (m)/K ) ∼= Clm(K ) with FrobP 7→ p when p | P.

The special case K (1) is called the Hilbert class field.

Every Abelian extension L of K is contained in some K (m), and
can therefore be described by a pair (m,H) where H ⊂ Clm(K ):

L = K (m)H and Gal(L/K ) ∼= Clm(K )/H.



Advanced algebraic number theory

Class field theory

Hilbert class field
To compute a Hilbert class field, we first need to compute the
class group.

bnf = bnfinit(a^2-a+50);
bnf.cyc
% = [9]

The class group is isomorphic to Z/9Z. We compute a relative
defining polynomial for the Hilbert class field with the
function bnrclassfield.

R = bnrclassfield(bnf)[1]
% = x^9 - 24*x^7 + (2*a - 1)*x^6 + 495*x^5
+ (-12*a + 6)*x^4 - 30*x^3 + (18*a - 9)*x^2
+ 18*x + (-2*a + 1)
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Hilbert class field

Conversely, from an abelian extension, we can recover its
corresponding class group with rnfconductor.

[cond,bnr,subg] = rnfconductor(bnf,R);
cond
% = [[1, 0; 0, 1], []]
subg
% = [9]

Here the conductor is trivial, and its norm group is trivial in the
class group.
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Hilbert class field

We can also ask for an absolute defining polynomial for the
Hilbert class field with the optional flag=2.

R2 = bnrclassfield(bnf,,2)
% = x^18 - 48*x^16 + 1566*x^14 - 23621*x^12
+ 244113*x^10 - 19818*x^8 - 3170*x^6
+ 17427*x^4 - 3258*x^2 + 199
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Ray class fields
We can also consider class fields with nontrivial conductor. The
function bnrinit computes Clm(K ).

bnr = bnrinit(bnf,12);
bnr.cyc
% = [72,2]

We can compute in advance the absolute degree, signature
and discriminant of the corresponding class field with bnrdisc.

[deg,r1,D] = bnrdisc(bnr);
[deg,r1]
% = [288,0]
D
% = 92477896[...538 digits...]84942237696

This field is huge!
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Ray class fields
For efficiency, we compute the class field as a compositum of
several smaller fields.

bnrclassfield(bnr)
% = [x^2 - 3, x^8 + (-27*a+24)*x^6
+ (-294*a-3273)*x^4 + (-3*a-3852)*x^2 - 3,
x^9 - 24*x^7 + (2*a-1)*x^6 + 495*x^5
+ (-12*a+6)*x^4 - 30*x^3 + (18*a-9)*x^2
+ 18*x + (-2*a+1)]

We can force the computation of a single polynomial
with flag=1.

bnrclassfield(bnr,,1)
% = [... huge polynomial ...]
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Ray class fields

We can also compute a subfield of the ray class field by
specifying a subgroup.

bnr = bnrinit(bnf,7)
bnr.cyc
% = [54,3]
bnrclassfield(bnr,3) \\elementary 3-subextension
% = [x^3 + 3*x + (14*a - 7),
x^3 + (-1008*a - 651)*x + (-1103067*a - 8072813)]
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Without the explicit field

Computing a defining polynomial with bnrclassfield can be
time-consuming, so it is better to compute the relevant
information without constructing the field, if possible.
We already saw the use of bnrdisc; we can also compute
splitting information without the explicit field.

pr41 = idealprimedec(bnf,41)[1];
bnrisprincipal(bnr,pr41,0)
% = [0,0]~

The Frobenius at p41 is trivial: this prime splits completely in the
degree 162 extension (which we did not compute).



Advanced algebraic number theory

Class field theory

Ray class fields

Let’s do a full example with an HNF ideal and a subgroup given
by a matrix.

bnr = bnrinit(bnf,[102709,43512;0,1]);
bnr.cyc
% = [17010, 27]
bnrclassfield(bnr,[9,3;0,1]) \\subgroup of index 9
% = [x^9 + (-297*a - 4470)*x^7 + ... ]
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Modulus with infinite places

If the base field has real places, we can specify the modulus at
infinity by providing a list of 0 or 1 of length the number of real
embeddings.

bnf=bnfinit(a^2-217);
bnf.cyc
% = []
bnrinit(bnf,1).cyc
% = []
bnrinit(bnf,[1,[1,1]]).cyc
% = [2]

The field Q(
√

217) has narrow class number 2.
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Galois action on the class group
We can compute the Galois action on ray class groups
with bnrgaloismatrix, i.e. the Galois action on the relative
Galois group, without the explicit abelian extension.

bnf = bnfinit(x^2+2*3*5*7*11);
bnf.cyc
% = [4, 2, 2, 2]
bnr = bnrinit(bnf,1,1);
gal = galoisinit(bnf);
m = bnrgaloismatrix(bnr,gal)[1]
% =
[3 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
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Questions ?

Have fun with GP !
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