Automorphism groups of lattices with roots Improving on Plesken-Souvignier in certain cases

Olivier Taïbi

CNRS, UMPA/ENS Lyon

Atelier PARI/GP 2024 (ENS Lyon, January 8-12 2024)

・ 同 ト ・ ヨ ト ・ ヨ

Lattices

Definition

A lattice is a finite free \mathbb{Z} -module L together with a symmetric bilinear form $L \times L \to \mathbb{Z}, (v_1, v_2) \mapsto v_1 \cdot v_2$ which is positive-definite: for all $v \in L \setminus \{0\}$ we have $v \cdot v > 0$.

Remark

The category \mathcal{L} of lattices is equivalent to its full subcategory of objects for which $L = \mathbb{Z}^n$ for some integer n: the set of objects is the disjoint union over $n \ge 0$ of the set of symmetric positive definite $S \in M_n(\mathbb{Z})$ and

$$Hom(S_1, S_2) = \{ M \in M_{n_2, n_1}(\mathbb{Z}) \mid {}^tMS_2M = S_1 \}.$$

< ロ > < 同 > < 三 > < 三 >

Lattice genera

Definition

Two lattices L_1, L_2 are in the same genus if for every prime p we have $\mathbb{Z}_p \otimes_{\mathbb{Z}} L_1 \simeq \mathbb{Z}_p \otimes_{\mathbb{Z}} L_2$ (as quadratic spaces over \mathbb{Z}_p).

This partitions the category \mathcal{L} of lattices into full subcategories (groupoids) called genera.

Theorem

Each genus only has finitely many isomorphism classes.

So each genus is (abstractly) equivalent to a finite collection of finite groups.

- 4 同 1 4 三 1 4 三 1

Lattice genera and automorphic forms

Proposition

Let \mathcal{X} be a genus, L a lattice in \mathcal{X} . Let G be the corresponding linear algebraic group: $G(R) \simeq \{M \in \operatorname{GL}_n(R) \mid {}^tMSM = S\}$. Then \mathcal{X} is equivalent to the quotient of $G(\mathbb{A}_f)/G(\widehat{\mathbb{Z}})$ by the left action of $G(\mathbb{Q})$:

- Natural bijection between \mathcal{X}/\sim and $G(\mathbb{Q})\backslash G(\mathbb{A}_f)/G(\widehat{\mathbb{Z}})$.
- If $[L] \in \mathcal{X} / \sim$ corresponds to $[x] \in G(\mathbb{Q}) \setminus G(\mathbb{A}_f) / G(\widehat{\mathbb{Z}})$ then Aut $(L) \simeq G(\mathbb{Q}) \cap xG(\widehat{\mathbb{Z}})x^{-1}$.

Concrete description of the space of automorphic forms for $G_{\mathbb{Q}}$, level $G(\widehat{\mathbb{Z}})$ and weight some algebraic representation V of $G(\mathbb{Q})$:

$$\bigoplus_{L]\in \mathcal{X}/\sim} V^{\mathsf{Aut}(L)}$$

伺 ト イヨト イヨト

Lattice genera: examples

Example

For $n \ge 1$, lattices in dimension 8n which are even (the diagonal of S is even) and unimodular (det S = 1) form a single (non-empty) genus $\mathcal{X}_{8n,1}^e$. Denoting $c(8n) = |\mathcal{X}_{8n,1}^e/ \sim |$:

$$c(8) = 1, \ c(16) = 2, \ c(24) = 24$$
 (Niemeier), $c(32) > 10^9$ (King).

Example (ramified at 2)

For $n \ge 1$, genus $\mathcal{X}_{n,1}^{\circ}$ of $S = I_n$ consists of all odd (=not even) unimodular lattices. 2020: n = 26,27 (Chenevier), n = 28(Allombert-Chenevier). $|\mathcal{X}_{28,1}^{\circ}/ \sim | = 374,062$.

くロ と く 同 と く ヨ と 一

э

Lattice genera: main example for this talk

Example (ramified at 3)

Lattices in dimension 27 which are even of determinant 6 form a single genus $\mathcal{X}^{e}_{27,6}$.

Computed a month ago (joint work with Gaëtan Chenevier). There are 285,825 (isomorphism classes of) lattices in this genus.

伺 ト イヨ ト イヨト

Computing a genus

To compute a genus \mathcal{X} (even just as a list of objects), have to:

- Generate lattices in \mathcal{X} (Kneser neighbours, or from lattices in some other genus).
- Decide which are isomorphic (qfisom, or better: good invariant discriminating non-isomorphic lattices).
- When are we done / does this invariant really discriminate non-isomorphic lattices?

Theorem (Smith-Minkowski-Siegel mass formula \sim Tamagawa numbers for special orthogonal groups)

Let \mathcal{X} be a genus of lattices. There is an explicit ("easily" computable) formula for its mass $\sum_{[L] \in \mathcal{X}/\sim} |\operatorname{Aut}(L)|^{-1}$.

This allows us to check if we are done, provided we can compute automorphism groups.

Given $S \in M_n(\mathbb{Z})$ symmetric positive definite, defining an inner product $(v_1, v_2) \mapsto v_1 \cdot v_2$ on $L = \mathbb{Z}^n$, want to compute the group

$$G = \operatorname{Aut}(L) \simeq \{ M \in M_n(\mathbb{Z}) \mid {}^tMSM = S \}.$$

Plesken-Souvignier 1997, qfauto in GP.

.

Plesken-Souvignier: basic idea

Let $m = \max(\operatorname{diag}(S) = \max\{e_i \cdot e_i \mid 1 \le i \le n\}$. Compute $A = \{v \in L \mid v \cdot v \le m\}$ (Fincke-Pohst, qfminim in GP). Have an embedding

$$G \longrightarrow A^n$$

 $g \longmapsto (g(e_i))_{1 \le i \le n}$

Recursive (backtracking) algorithm to enumerate all $g \in G$:

- Compute list of candidates for $g(e_1)$: $\ell_1 := \{e'_1 \in L \mid e'_1 \cdot e'_1 = e_1 \cdot e_1\} \subset A.$
- For each $e_1' \in \ell_1$, compute list of candidates for $g(e_2)$:

$$\ell_2(e_1'):=\{e_2'\in L\,|\,e_2'\cdot e_2'=e_2\cdot e_2 \text{ and } e_2'\cdot e_1'=e_2\cdot e_1\}\subset A$$

etc

・ 同 ト ・ ヨ ト ・ ヨ ト …

Plesken-Souvignier: refinements

Refinements (crucial):

- Only compute generators for G, which can be very big (e.g. Leech $\in \mathcal{X}_{24,1}^e$ has 8,315,553,613,086,720,000 automorphisms). Letting $G_i = \text{Stab}_G(e_1, \ldots, e_{i-1})$, compute generators for G_n (trivial), G_{n-1} (slightly harder), ..., up to $G_1 = G$. Knowing G_{i+1} , compute $G_i \cdot e_i$ and generators for G_i .
- Fingerprint: optimize $(|\ell_i(e'_1,\ldots,e'_{i-1})|)_{1\leq i\leq n}$
- Vector sums
- Bacher polynomials (for very symmetric lattices)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Back to example: $\mathcal{X}_{27.6}^{e}$

Recall: genus $\mathcal{X}_{27,6}^e$ has 285,825 (isomorphism classes of) lattices. For almost all of them, there is a basis such that maxdiag(S) = 4, and for these qfauto computes Aut(L) in about 3.5s.

Problem: 28 of them are not generated by vectors of length \leq 4, they have about $13 \cdot 10^6$ vectors of length 6. One of them is not generated by vectors of length \leq 6, it has about $5 \cdot 10^8$ vectors of length 8.

The root system of a lattice

Proposition

Let L be a lattice. Then $R = \{v \in L \mid v \cdot v = 2\}$ is a simply-laced root system (in the span of R in the \mathbb{Q} -vector space $\mathbb{Q}L$). In particular it decomposes uniquely as an orthogonal disjoint union of root systems isomorphic to one of A_n for $n \ge 1$, D_n for $n \ge 4$ and E_n for $n \in \{6, 7, 8\}$.

Main point: for $\alpha \in R$, the symmetry

$$s_{\alpha}: \mathbb{Q}L \longrightarrow \mathbb{Q}L$$
$$v \longmapsto v - (\alpha \cdot v)\alpha$$

stabilizes R, because it stabilizes L.

The root system *R* generates a sublattice Q(R) of *L*. The Weyl group $W(R) = \langle s_{\alpha}, \alpha \in R \rangle$ embeds in Aut(*L*), and is "well-known".

Based root systems in lattices

Proposition

Let L be a lattice, R its root system. Fix an order R^+ of the root system R (in particular $R = R^+ \sqcup -R^+$). We have an isomorphism $\operatorname{Aut}(L) \simeq W(R) \rtimes \operatorname{Aut}(L, R^+)$. The morphism $\operatorname{Aut}(L, R^+) \to \operatorname{Aut}(R, R^+) \times \operatorname{Aut}(R^{\perp,L})$ is injective.

Let $\Delta \subset R^+$ be the set of simple roots (in particular Δ is a basis of Q(R)). The group Aut (R, R^+) is well-known (as a subgroup of \mathfrak{S}_{Δ}): if $R \simeq \bigsqcup m_i R_i$ with R_i irreducible then

$$\operatorname{Aut}(R, R^+) \simeq \prod_i \operatorname{Aut}(R_i)^{m_i} \rtimes \mathfrak{S}_{m_i}.$$

< 同 > < 三 > < 三 >

Example: worst lattice in $\mathcal{X}^{e}_{27,6}$

The unique lattice L in $\mathcal{X}^{e}_{27,6}$ which is not generated by its vectors of length ≤ 6 has root system $R \simeq D_{26}$ and

- $Q(R) \simeq \{(x_1, \ldots, x_{26}) \in \mathbb{Z}^{26} | \sum_i x_i \text{ even} \}$ (with standard inner product), $W(R) \simeq \{\pm 1\}^{25} \rtimes \mathfrak{S}_{26}$ and $\operatorname{Aut}(R, R^+) \simeq \mathfrak{S}_2$,
- $R^{\perp,L}$ has Gram matrix (6),
- $Q(R) \oplus R^{\perp,L}$ has index 2 in L.

So Aut(L, R^+) is the stabilizer of L in Aut(R, R^+) × {±1}, and may be computed with pen and paper ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Root systems of the 27 lattices in $\mathcal{X}^{e}_{27,6}$ which are generated by vectors of length \leq 6 but not 4:

$A_{20}E_{6}$	$A_9 D_{11} D_6$	$A_{11}D_9E_7$	$A_5^3 D_{12}$	$A_{15}D_{11}$	$A_3 A_9 D_{14}$
$A_1^2 D_{16} D_8$	$D_{12}D_{14}$	$A_2 D_{18} E_7$	$D_{20}D_{6}$	$A_5 D_{15} E_6$	$A_1 A_7 D_{13} D_5$
A_9D_{17}	$A_{11}D_9E_6$	$A_{7}^{2}D_{5}D_{7}$	$D_{14}D_{6}^{2}$	$D_{12}E_{7}^{2}$	$D_{18}E_{8}$
$A_{9}^{2}D_{8}$	$D_{10}D_{8}^{2}$	$D_{12}E_{7}^{2}$	$D_{6}^{3}D_{8}$	$A_{5}^{4}D_{6}$	$D_{4}^{5}D_{6}$
$A_{3}^{7}D_{5}$	$A_1^{22}D_4$	A_3			
Rank is 26 or 27, except for A_3 .					

Restrict to lattices L in $\mathcal{X}_{27,6}^e$ which do not factor as $Q(A_1) \oplus L'$. Number of isomorphism classes of lattices by rank of the root system:

Olivier Taïbi Automorphism groups of lattices with roots

An invariant

Goal: modify Plesken-Souvignier to compute $Aut(L, R^+)$.

Definition

For
$$v \in L$$
, $inv(v, R^+) := Aut(R, R^+) \cdot (\alpha \cdot v)_{\alpha \in \Delta}$.

The group $Aut(L, R^+)$ preserves these invariants, in particular $g \in Aut(L, R^+)$ maps e_i to an element of

$$\{v \in L \mid v \cdot v = e_i \cdot e_i \text{ and } \operatorname{inv}(v, R^+) = \operatorname{inv}(e_i, R^+)\}.$$

This invariant is computable: can choose representatives for each orbit and map an element of \mathbb{Z}^{Δ} to the corresponding representative (sorting for certain lexicographic orders).

・ 同 ト ・ ヨ ト ・ ヨ ト

Bonus

 Root system gives a number of (linearly independent) vectors invariant under Aut(L, R⁺), e.g. a factor A^m_r gives ⌊(r + 1)/2⌋ invariant vectors and a factor D^m_r gives r − 1 invariant vectors. When the set I of such invariant vectors is large it is cheaper to enumerate each

$$\{v \in L \mid v \cdot v = e_i \cdot e_i \text{ and } \forall w \in I, v \cdot w = e_i \cdot w\}$$

(reduces to translated Fincke-Pohst in dimension n - |I|) than to filter the enumeration of all short vectors according to $inv(-, R^+)$.

• The sum of all $v \in L$ having given norm (≥ 4) and invariant with respect to R^+ is also invariant under Aut(L, R^+), this often yields new (linearly independent) invariant vectors.

< ロ > < 同 > < 三 > < 三 > .